[過去ログ]
Inter-universal geometry と ABC予想 (応援スレ) 45 (1002レス)
Inter-universal geometry と ABC予想 (応援スレ) 45 http://rio2016.5ch.net/test/read.cgi/math/1588552720/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
644: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2020/05/13(水) 21:31:51 ID:fChrPFrq >>637 追加 https://ja.wikipedia.org/wiki/%E6%A3%AE%E7%94%B0%E5%90%8C%E5%80%A4 森田同値 (抜粋) 代数学において、森田同値(もりたどうち、英: Morita equivalence)とは、環論的な多くの性質を保つ環の間の関係のことを言う。これはMorita (1958)において同値関係と双対性に関する記号を定義した森田紀一にちなんで名付けられた。 動機 環はその環上の加群を通じて研究されることが一般的である。これは加群が環の表現と見做せるからである。すべての環 R は環の積による作用によって自然に R 加群の構造を持つので、加群論的な研究方法はより一般的で有益な情報をもたらす。このような訳で、環についての研究はその環上の加群の成す圏を研究することによってしばしば為される。 この視点からの自然な帰結として、環が森田同値であるとはその環上の加群の成す圏が圏同値であることと定めた。 この表記方法は非可換環を扱っている場合にのみ興味の対象となる。なぜなら可換環が森田同値である必要十分条件は環同型であるからである。これは一般に森田同値な環の中心が環同型なことから従う。 定義 (結合的で単位元を持つ)環 R, S が(森田)同値であるとは、(左)R 加群の成す圏 R-Mod と(左)S 加群の成す圏 S-Mod との間に圏同値があることを言う。左加群の成す圏 R-Mod と S-Mod とが森田同値である必要十分条件は、右加群の成す圏 Mod-R と Mod-S とが森田同値であることを示すことができる[1]。 さらに圏同値を与えるどんな R-Mod から S-Mod への関手も自動的に加法的であることを示すことができる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1588552720/644
645: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2020/05/13(水) 21:32:40 ID:fChrPFrq >>644 つづき 同値不変な性質 多くの性質が加群の圏の対象による森田同値を与える関手によって保たれる。一般的に、(台集合の元や環に依らずに)加群とその準同型のみで定義される加群の性質は、森田同値を与える関手によって保たれる圏論的性質である。 たとえば F(?) が R-Mod から S-Mod への森田同値を与える関手ならば、R 加群 M が次の性質をもつ必要十分条件は S 加群 F(M) がその性質を持つことである:入射的・射影的・平坦・有限生成・有限表示的・アルティン的・ネーター的。森田同値不変とは限らない性質には自由であることや巡回的であることがある。 多くの環論的性質はその環上の加群のことばで述べられるので、これらの性質は森田同値な環の間で保たれる。森田同値な環で共有される性質は森田不変量と呼ばれる。 https://en.wikipedia.org/wiki/Morita_equivalence Morita equivalence (抜粋) Significance in K-theory If two rings are Morita equivalent, there is an induced equivalence of the respective categories of projective modules since the Morita equivalences will preserve exact sequences (and hence projective modules). Since the algebraic K-theory of a ring is defined (in Quillen's approach) in terms of the homotopy groups of (roughly) the classifying space of the nerve of the (small) category of finitely generated projective modules over the ring, Morita equivalent rings must have isomorphic K-groups. 以上 http://rio2016.5ch.net/test/read.cgi/math/1588552720/645
646: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2020/05/13(水) 21:48:24 ID:fChrPFrq >>644-645 1)森田同値ね(^^; 環上の加群の圏を考えるのが1つか 2)「任意の環は単一対象前加法圏 (preadditive category) とみなすことができる」(>>643)か 3)環の圏という考えがある。これは、結構普通ですね 4)だれか、「環が2圏」(2-圏は下記)とか間違って、David Roberts氏に突っ込まれていた。が、そんな間違いは 私でも分かるぜよw(^^; (参考) https://ja.wikipedia.org/wiki/%E5%B0%8F%E3%81%95%E3%81%84%E5%9C%8F%E3%81%AE%E5%9C%8F 小さい圏の圏 (抜粋) 数学の特に圏論における(小さい)圏の圏(ちいさいけんのけん、英: category of small categories)Cat は、すべての小さい圏を対象とし、圏の間の函手を射とする圏である。実際には、Cat は自然変換を二次元の射(英語版) (2-射) とする二次圏(英語版) (2-圏) を成すものと見なせる。 Cat の始対象は対象も射も持たない空圏 0 であり[1]、終対象はただ一つの対象とただ一つの射(唯一の対象上の恒等射)のみからなる圏 1(自明圏あるいは終圏という)である[2]。 小さい圏の圏 Cat それ自身は大きい圏であり、それゆえ自身を対象として含むことはない。ラッセルの逆理(の圏版)を避けるには「すべての(小さいとは限らない)圏の圏」はあってはならないが、「すべての圏の擬圏」(quasi-category[注釈 1] of categories) CATを考える[注釈 2]ことはできる(擬圏は大きい圏を対象にできるという意味で圏ではないとすれば、圏の擬圏は自身を対象に含まない)。 性質 圏の圏 Cat は、各圏に対してその恒等射と射の合成を忘れることにより、箙の圏 Quiv への忘却函手(英語版) U: Cat → Quiv が定義できる。この忘却函手 U の左随伴 F: Quiv → Cat は各箙にそれが生成する自由圏(英語版)を対応させる自由函手である。 注 注釈 1^ 高次圏論において、これとは異なる意味で (∞-圏のモデルとして) quasi-category(英語版) という語が用いられる[3]が、それと混同してはならない 2^ CAT in nLab などを見よ http://rio2016.5ch.net/test/read.cgi/math/1588552720/646
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s