[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 45 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
40: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/05/04(月)19:23 ID:ncpDqOGk(31/40) AAS
>>39
つづき
l進コホモロジー群
エタール・コホモロジーは係数がZ/nZの場合には上手く働くが、ねじれを持たない(たとえば整係数や有理係数)場合は満足する結果を与えない。エタール・コホモロジーからねじれを持たないコホモロジー群を得るためには、ねじれを持つ係数のエタール・コホモロジーの逆極限をとればよい。
これはl進コホモロジーもしくはl進エタール・コホモロジーと呼ばれる。ここでlは考えているスキームVの標数pとは異なる任意の素数を表す。たとえば定数層Z/lkZのエタール・コホモロジー
の逆極限
としてl進コホモロジーが定義される。ここで注意しなければならないのだが、コホモロジー(右導来関手をとる操作)は逆極限をとる操作と可換ではない。したがってこのl進コホモロジーはエタール層Zlに係数をもつエタール・コホモロジーとは異なるものである。後者のコホモロジーは存在するが"悪い"コホモロジー群を与える。
l進コホモロジーからねじれ部分群を取り除き、標数0の体上のベクトル空間としてコホモロジー群を得たいならば
と定義する。ここでこの記法は誤解を与えるのだが、Qlはエタール層でもl進層でもない。
性質
一般的に多様体のl進コホモロジー群は複素多様体の特異コホモロジー群と似たような性質を持つ。ただ特異コホモロジーは整数もしくは有理数上の加群であるのに対して、l進コホモロジーはl進整数もしくはl進数上の加群になる。非特異な射影多様体上のl進コホモロジーはポアンカレ双対性を満たすほかケネスの公式も満たす。
一方l進コホモロジーは特異コホモロジーと異なり、ガロア群の作用を持つという性質がある。たとえば有理数体上定義された複素多様体のl進コホモロジー群は有理数体の絶対ガロア群の作用を持ち、ガロア表現と関係が深い。
(引用終り)
以上
上下前次1-新書関写板覧索設栞歴
あと 962 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.013s