[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 45 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
27(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/05/04(月)16:40 ID:ncpDqOGk(20/40) AAS
>>26 追加
外部リンク:en.wikipedia.org
p-adic Hodge theory
In mathematics, p-adic Hodge theory is a theory that provides a way to classify and study p-adic Galois representations of characteristic 0 local fields[1] with residual characteristic p (such as Qp).
The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge?Tate representation.
Hodge?Tate representations are related to certain decompositions of p-adic cohomology theories analogous to the Hodge decomposition, hence the name p-adic Hodge theory. Further developments were inspired by properties of p-adic Galois representations arising from the etale cohomology of varieties.
Jean-Marc Fontaine introduced many of the basic concepts of the field.
Contents
1 General classification of p-adic representations
2 Period rings and comparison isomorphisms in arithmetic geometry
3 Notes
4 References
4.1 Primary sources
4.2 Secondary sources
上下前次1-新書関写板覧索設栞歴
あと 975 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.014s