[過去ログ]
Inter-universal geometry と ABC予想 (応援スレ) 45 (1002レス)
上
下
前
次
1-
新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
252
: 2020/05/08(金)13:45
ID:qXGvfbUV(8/26)
AA×
>>236
外部リンク:en.wikipedia.org
外部リンク:en.wikipedia.org
[240|
320
|
480
|
600
|
100%
|
JPG
|
べ
|
レス栞
|
レス消
]
252: [sage] 2020/05/08(金) 13:45:23 ID:qXGvfbUV >>236 >https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory >Zermelo-Fraenkel set theory > 2.3 3. Axiom schema of specification (also called the axiom schema of separation or of restricted comprehension) (引用終り) 追加 これ、現代では大分見直しされているようですね(^^; https://en.wikipedia.org/wiki/Axiom_schema_of_specification Axiom schema of specification (抜粋) In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation, subset axiom scheme or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set. Because restricting comprehension avoided Russell's paradox, several mathematicians including Zermelo, Fraenkel, and Godel considered it the most important axiom of set theory. Relation to the axiom schema of replacement The axiom schema of separation can almost be derived from the axiom schema of replacement. For this reason, the axiom schema of specification is often left out of modern lists of the Zermelo?Fraenkel axioms. However, it's still important for historical considerations, and for comparison with alternative axiomatizations of set theory, as can be seen for example in the following sections. Unrestricted comprehension Accepting only the axiom schema of specification was the beginning of axiomatic set theory. Most of the other Zermelo?Fraenkel axioms (but not the axiom of extensionality, the axiom of regularity, or the axiom of choice) then became necessary to make up for some of what was lost by changing the axiom schema of comprehension to the axiom schema of specification ? each of these axioms states that a certain set exists, and defines that set by giving a predicate for its members to satisfy, i.e. it is a special case of the axiom schema of comprehension. http://rio2016.5ch.net/test/read.cgi/math/1588552720/252
引用終り 追加 これ現代では大分見直しされているようですね 抜粋
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 750 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
ぬこの手
ぬこTOP
0.055s