[過去ログ]
Inter-universal geometry と ABC予想 (応援スレ) 45 (1002レス)
Inter-universal geometry と ABC予想 (応援スレ) 45 http://rio2016.5ch.net/test/read.cgi/math/1588552720/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
18: 現代数学の系譜 雑談 ◆e.a0E5TtKE [sage] 2020/05/04(月) 11:19:12 ID:ncpDqOGk メモ貼る https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AD%E3%82%A2%E5%9C%8F ガロア圏(Galois category)とは古典ガロア理論が展開される、いくつかの公理を満たす圏である。元来古典ガロア理論および位相幾何学における基本群の理論の類似点が指摘されていたが、アレクサンドル・グロタンディークがガロア理論の成り立つ公理系を明言し、一般的なガロア圏の理論を構成した。 古典ガロア理論および基本群の理論はこの理論の基本的な例になる。この理論はグロタンディークのガロア理論と呼ばれることもある。 目次 1 ガロア圏成立の経緯 2 定義 3 その他の話題 ガロア圏成立の経緯 グロタンディークのガロア理論、ガロア圏は、体のガロア理論の抽象的なアプローチであり、1960年頃に開発され、代数幾何学の設定おいて代数トポロジー(algebraic topology)の基本群の研究方法をもたらした。体論の古典的設定の中で、1930年代頃から標準的となっている線型代数を基礎としたエミール・アルティン(Emil Artin)の理論に代わる見方をもたらした。 アレクサンドル・グロタンディーク(Alexander Grothendieck)のアプローチは、固定された射有限群 G に対して有限 G-集合の圏を特徴付ける圏論的性質に関係している。例えば、G として ^Z と表記される群が考えられる。この群は巡回加法群 Z/nZ の逆極限である。あるいは同じことであるが、有限指数の部分群の位相に対する無限巡回群の完備化である。 すると、有限 G-集合は G が商有限巡回群を通して作用している有限集合 X であり、X の置換を与えると特定することができる。 上の例では、古典的なガロア理論との関係は、^Z を任意の有限体 F 上の代数的閉包 F の射有限ガロア群 Gal(F/F) と見なすことである。 すなわち、F を固定する F の自己同型は、 F 上の大きな有限分解体をとるように、逆極限により記述される。幾何学との関係は、原点を取り除いた複素平面内の単位円板の被覆空間として見なすことができる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1588552720/18
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 984 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.010s