[過去ログ]
Inter-universal geometry と ABC予想 (応援スレ) 45 (1002レス)
Inter-universal geometry と ABC予想 (応援スレ) 45 http://rio2016.5ch.net/test/read.cgi/math/1588552720/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
181: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2020/05/06(水) 16:00:33 ID:/JY71bka >>162 >log構造の勉強をはじめました。 >(p進-hodgeの理解に必要みたいなので) 下記の 対数的(logarithmic)微分形式 が関係しているのかな?(^^; https://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0%E7%9A%84%E5%BE%AE%E5%88%86%E5%BD%A2%E5%BC%8F 対数的微分形式 (抜粋) 複素多様体論や代数多様体論では、対数的(logarithmic)微分形式は、ある種類の極をもつ有理型微分形式である。 ある開被覆が存在し、この微分形式の対数微分としての局所表現が存在する(通常の微分作用素 d/dz の中の外微分 d を少し変形する)。ω が整数の留数の単純極を持つだけであることに注意する。 高次元の複素多様体では、ポアンカレ留数(英語版)(Poincare residue)は、極に沿った対数的微分形式の振る舞いを記述することに使われる。 目次 1 正則対数複体 1.1 高次元の例 1.2 ホッジ理論 ホッジ理論 正則対数複体は、複素代数多様体のホッジ理論への適用することが可能である。X を複素代数多様体、 j:X\hookrightarrow Y} j:X\hookrightarrow Y} を良いコンパクト化とする。このことは Y がコンパクト代数多様体で、D = Y ? X が Y 上の単純な横断的交叉をもつ因子であることを意味する。層の複体の自然な包含写像 Ω*_{Y}(log D)→ j*Ω*_{X} は、擬同型であることがわかる。 古典的には、たとえば、楕円函数の理論の中では、対数的微分形式は第一種微分形式(英語版)(differentials of the first kind)の補完物と考えられてきた。 対数的微分形式は、第二種微分形式と呼ばれることもある(不幸にも、第三種微分形式との間に不整合がある)。古典論は、現在では、ホッジ理論の一面として取り込まれている。 たとえば、あるリーマン面 S に対し、第一種微分形式は、H1(S) の項 H1,0 として考えられている。ドルボー同型により層コホモロジー群 H0(S,Ω) として解釈すると、これらの定義は同義と考えられる定義である。 0 が S 上の正則函数 の層であるとき、 H1(S,O) と解釈できるように、H1(S) の中の H1,0 直和を、対数的微分形式のベクトル空間として、より具体的にみなすことができる。 http://rio2016.5ch.net/test/read.cgi/math/1588552720/181
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 821 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.011s