[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む83 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む83 http://rio2016.5ch.net/test/read.cgi/math/1581243504/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
109: 132人目の素数さん [] 2020/02/11(火) 07:08:42.41 ID:yCL40qf3 >>108 そもそも現実世界には無限個の箱はないだろ あったとしても、実数の無限列s、s’に対して 「sとs’がある箇所から先一致する」 と判定する手続きがないだろ (これ言い出すとそもそも尻尾の同値類が 構成できないということになる) で、上記の同値関係の判定ができたとしても 同値類の代表元r(s)を返す関数rが 具体的に構成できないだろ (rは選択公理で存在が云えるだけのこと) http://rio2016.5ch.net/test/read.cgi/math/1581243504/109
110: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 08:48:20.17 ID:CB29Ozfy >>97 追加 https://ocw.u-tokyo.ac.jp/lecture_files/gf_15/2/notes/ja/02saito.pdf 学術俯瞰講義 〜数学を創る〜 第2回 東京大学 Mathematics ‘‘On Campus’’ ことばを創り、世界を創る 2009.10.15 de Fermat. (1601.8.20-. 1665 1 12).1.12). フランスの. トゥールーズの人. 「数論の父」 ... フェルマーの最終定理before 1986. フェルマーの最終定理before 1986. ? 超有名で、. 歴史的に重要. ? 歴史的に重要. 代数的整数論の確立(クンマー) ... http://www.kurims.kyoto-u.ac.jp/~kenkyubu/kokai-koza/yasuda.pdf 平成19年度(第29回)数学入門公開講座テキスト(京都大学数理解析研究所,平成19年7月30日〜8月2日開催) R = T 定理の仕組みとその応用 安田 正大 この講座では, Fermat 予想の証明のために Wiles, Taylor-Wiles が確立した R = T 定理に関する最近の 発展と応用についてお話します. この原稿は数学の専門家でない方を対象にして書かれており, 内容の正確さよりも, 大体の感じをつかん でもらうことを目標としています. 読者に難解な印象を与えないようにするために, 専門家向けの文章では 許されないようなあいまいな表現の仕方をあえてしている部分があります. 1. Fermat 予想 19. 謝辞 草稿段階の本原稿に目を通してくださり, たくさんの有益な助言を下さいました山下剛さんに感謝いたし ます.19 http://www7a.biglobe.ne.jp/~paco_poco/hakusouroku/pdf/43_fermat.pdf 43「フェルマーの最終定理」 とうとうフェルマーの最終定理について書く時が来た。 多分これまでに書いた中でも最も困難な挑戦になるだろう。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/110
111: 132人目の素数さん [] 2020/02/11(火) 10:24:45.45 ID:yCL40qf3 「確率論の専門家」も「ジム」も語らなかったこと 順序統計量 https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E7%B5%B1%E8%A8%88%E9%87%8F 「順序統計量(じゅんじょとうけいりょう、英: order statistic)は、 統計において k 番目に小さい値である標本を求めることをいう。 いま X1, X2,..., Xn は 無作為抽出での標本であるとする。 すなわち、同一分布に従い、互いに独立 である(i.i.d.)とする。 さらに、これらは連続分布を持つ確率変数であり、 f (x) がその確率密度関数、F (x) が累積分布関数とする。 また、これらを小さい順に並べた順序統計量を X(1), X(2),..., X(n) とする。 このとき、最小値X_(1)、最大値X_(n)の累積分布関数については、 F_X_(1)(x)=1-{1-F(x)}^n F_X_(n)(x)&={F(x)}^n となる。」 99個の標本の最大値F_X_(99)に対して、 さらに1個とった標本が、より大きくなる確率は ∫F_X(99)(x)f(x)dx =∫[F(x)]^99(dF(x)/dx)dx =∫(0〜1)F^99dF =1/100[F^100](0〜1) =1/100 http://rio2016.5ch.net/test/read.cgi/math/1581243504/111
112: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 11:24:57.81 ID:6xY3HAGO >>109 >そもそも現実世界には無限個の箱はないだろ >あったとしても、実数の無限列s、s’に対して >「sとs’がある箇所から先一致する」 >と判定する手続きがないだろ >(これ言い出すとそもそも尻尾の同値類が > 構成できないということになる) どうもスレ主です。 この考察は、良い線行っていると思う 1.”実数の無限列s、s’に対して「sとs’がある箇所から先一致する」と判定する手続きがないだろ”は、人間の能力の限界として正しいが これを認めると、コーシー列で定義された二つの異なる実数r,r' の区別が出来ないことになる なので、数学は思念として可能としている (所詮、人間は、無限を極限として、考えているにすぎないのかもしれないね) 2.同様に、物理的に無限個の箱はないとしても、数学界では思念上の形式的冪級数は存在し、形式的冪級数の係数を無限の箱と見れば良い (形式的冪級数も、結局はn次多項式のn→∞の極限として、考えているにすぎないのかもしれないね。コーシー列に同じ) (参考) https://ja.wikipedia.org/wiki/%E5%BD%A2%E5%BC%8F%E7%9A%84%E5%86%AA%E7%B4%9A%E6%95%B0 形式的冪級数 定義 A を可換とは限らない環とする。A に係数をもち X を変数(不定元)とする(一変数)形式的冪級数 (formal power series) とは、各 ai (i = 0, 1, 2, …) を A の元として、 Σn=0〜∞ anX^n=a0+a1X+a2X^2+・・・ の形をしたものである。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/112
113: 132人目の素数さん [] 2020/02/11(火) 11:31:25.42 ID:yCL40qf3 >>112 >コーシー列で定義された二つの異なる実数r,r' の区別が出来ない rとr'の定義次第で、できるときもある むしろ、ほとんど全ての実数は人力では構成不能、 という点のほうが重要かと思われ http://rio2016.5ch.net/test/read.cgi/math/1581243504/113
114: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 11:32:28.34 ID:6xY3HAGO >>109 >で、上記の同値関係の判定ができたとしても >同値類の代表元r(s)を返す関数rが >具体的に構成できないだろ >(rは選択公理で存在が云えるだけのこと) (>>22より) 可算無限数列 s=(s1,s2,・・sd,sd+1・・)に対し s自身を代表としても良い 代表は、単に 一つの同値類から、一つを選ぶだけで良いので あるいは、s自身がいやなら、先頭の数字を少し変化させて s=(s'1,s'2,・・sd,sd+1・・) とでもしておけば、良い フルパワー選択公理は必要なのは、 非可算無限存在する同値類の各々全部から、代表を選ぶときですね http://rio2016.5ch.net/test/read.cgi/math/1581243504/114
115: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 11:36:32.02 ID:6xY3HAGO >>113 >むしろ、ほとんど全ての実数は人力では構成不能、 >という点のほうが重要かと思われ それ同意です 実際、おっちゃんが研究して、オイラー定数γは、有理数ではないかというが 現実に、現代の数学でも未解決問題 もし、人間に任意の無限数列のシッポを見極める能力があれば、 有理数か無理数かを、判定可能のはずですからね(^^ http://rio2016.5ch.net/test/read.cgi/math/1581243504/115
116: 132人目の素数さん [] 2020/02/11(火) 11:41:08.14 ID:yCL40qf3 >>114 回答者は箱を開けた中身がどんな列か予測できないので The Riddleで100人の回答者が共通の代表元を選ぶとするなら 全ての同値類の代表元をあらかじめ決める必要がありますね そのための選択公理ということです 100人の回答者が共通の代表元を選べない、というなら 選択公理は成立しないことになりますね http://rio2016.5ch.net/test/read.cgi/math/1581243504/116
117: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 11:42:47.34 ID:6xY3HAGO >>111 >「確率論の専門家」も「ジム」も語らなかったこと >順序統計量 > https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E7%B5%B1%E8%A8%88%E9%87%8F うん それも良い考察ですね 一つ指摘しておけば 分布を積分したときに、∞に発散する場合には、数学的扱いが難しくなるってことです そして、時枝さんに戻せば、決定番号dについて、積分ができない いや、正確には、箱に入れる数を、0〜9の整数に限り、箱の数nを有限にすれば、積分(この場合和)は可能です しかし、上記でもn→∞ では、発散してしまう http://rio2016.5ch.net/test/read.cgi/math/1581243504/117
118: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 11:46:13.96 ID:6xY3HAGO >>116 >The Riddleで100人の回答者が共通の代表元を選ぶとするなら >全ての同値類の代表元をあらかじめ決める必要がありますね 代表を決定する人を一人立てれば良い その人は、可算無限数列をもらって、同値類と代表を一つ返す(まあ、関数みたいな役割です) その人は、それだけを仕事とする。それ以外の一切の情報を出さないとすれば 100人の回答者の得る代表は、一意に決まる http://rio2016.5ch.net/test/read.cgi/math/1581243504/118
119: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 11:47:20.46 ID:6xY3HAGO >>118 補足 >その人は、それだけを仕事とする。それ以外の一切の情報を出さないとすれば 100人の間の情報連絡役にはならないという意味ね(^^ http://rio2016.5ch.net/test/read.cgi/math/1581243504/119
120: 132人目の素数さん [] 2020/02/11(火) 11:55:07.68 ID:pez17n4y >>114 時枝戦略では選択公理が必要 不定な代表からは情報をもらえないから 分かってないバカは黙ってろ http://rio2016.5ch.net/test/read.cgi/math/1581243504/120
121: 132人目の素数さん [] 2020/02/11(火) 11:55:57.46 ID:pez17n4y 反例まだ〜? ☆ チン マチクタビレタ〜 マチクタビレタ〜 ☆ チン 〃 ∧_∧ ヽ___\(\・∀・) \_/ ⊂ ⊂_) / ̄ ̄ ̄ ̄ ̄ /| | ̄ ̄ ̄ ̄ ̄ ̄| | | 愛媛みかん |/  ̄ ̄ ̄ ̄ ̄ ̄ http://rio2016.5ch.net/test/read.cgi/math/1581243504/121
122: 132人目の素数さん [] 2020/02/11(火) 11:56:15.69 ID:pez17n4y 証明のギャップまだ〜? ☆ チン マチクタビレタ〜 マチクタビレタ〜 ☆ チン 〃 ∧_∧ ヽ___\(\・∀・) \_/ ⊂ ⊂_) / ̄ ̄ ̄ ̄ ̄ /| | ̄ ̄ ̄ ̄ ̄ ̄| | | 愛媛みかん |/  ̄ ̄ ̄ ̄ ̄ ̄ http://rio2016.5ch.net/test/read.cgi/math/1581243504/122
123: 132人目の素数さん [] 2020/02/11(火) 11:58:24.02 ID:yCL40qf3 >>117 ここでは標本は箱ではなく列とします この場合、列の数は有限ですから無限はでてきません 決定番号の確率分布関数は定義できませんが 決定番号0の確率を基準として 決定番号1,2,3、・・・の各場合の確率を比として表すことは可能です そしてこのような関数で代用した場合の計算を行った場合 100列の場合は1/100以下になると思われます http://rio2016.5ch.net/test/read.cgi/math/1581243504/123
124: 132人目の素数さん [] 2020/02/11(火) 12:00:14.46 ID:yCL40qf3 >>118 >代表を決定する人を一人立てれば良い そのような人が存在し得る、というのが選択公理です http://rio2016.5ch.net/test/read.cgi/math/1581243504/124
125: 132人目の素数さん [] 2020/02/11(火) 12:11:02.36 ID:yCL40qf3 箱に入れる数を、0〜9の整数に限るとします そのとき ・決定番号n+1以下の確率は 決定番号n以下の確率の10倍 2列とる場合 ・決定番号の最大値がn+1以下の確率P[n+1]は 決定番号の最大値がn以下の確率P[n]の10^2=100倍 なぜなら P[n+1] =P[n]+2*9*P[n]+9*9*P[n] =(1+18+91)P[n] =100P[n] だから (2番目の項は1列目だけもしくは2列目だけ決定番号がn+1の場合 3番目の項は1列目および2列目の決定番号がn+1の場合) http://rio2016.5ch.net/test/read.cgi/math/1581243504/125
126: 132人目の素数さん [] 2020/02/11(火) 12:13:17.00 ID:pez17n4y >>117 決定番号の非可測性は時枝戦略を否定する材料にならない。 もし「100列のうちのある列がアタリである確率」が必要なら材料になるが。 自称確率論の専門家はそこを誤解している。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/126
127: 132人目の素数さん [] 2020/02/11(火) 12:14:42.63 ID:yCL40qf3 >>125 訂正 91→81 −−− 箱に入れる数を、0〜9の整数に限るとします そのとき ・決定番号n+1以下の確率は 決定番号n以下の確率の10倍 2列とる場合 ・決定番号の最大値がn+1以下の確率P[n+1]は 決定番号の最大値がn以下の確率P[n]の10^2=100倍 なぜなら P[n+1] =P[n]+2*9*P[n]+9*9*P[n] =(1+18+81)P[n] =100P[n] だから (2番目の項は1列目だけもしくは2列目だけ決定番号がn+1の場合 3番目の項は1列目および2列目の決定番号がn+1の場合) http://rio2016.5ch.net/test/read.cgi/math/1581243504/127
128: 132人目の素数さん [sage] 2020/02/11(火) 12:15:12.71 ID:gdPWLy3I 多分、この工学バカは100列の中身を見て代表元を作る第3者がいれば 100列だけの代表元だけで事足りるって言いたいんじゃないかな。 でもさ、そんな第3者がいたとして、そのひとは箱の中身を全部見てるんだから その情報使えば当てられるのはますます当たり前ってことになるよね。 ほんとバカだね。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/128
129: 132人目の素数さん [] 2020/02/11(火) 12:19:47.84 ID:yCL40qf3 >>128 100列を定数とするならそういう考え方もありますね その場合、数セミの記事は無条件で成立することになりますね http://rio2016.5ch.net/test/read.cgi/math/1581243504/129
130: 132人目の素数さん [] 2020/02/11(火) 12:34:41.22 ID:pez17n4y 仲間にカンニングさせれば当てられますってかw バカ丸出しですなw http://rio2016.5ch.net/test/read.cgi/math/1581243504/130
131: 132人目の素数さん [sage] 2020/02/11(火) 12:43:53.57 ID:gdPWLy3I そんな第3者がいれば当てられるのは当たり前。 しかし選択公理は実はそれと同じ役割をしている。 だから、時枝解法成立は当たり前ってことにしかならないから自爆w http://rio2016.5ch.net/test/read.cgi/math/1581243504/131
132: 132人目の素数さん [sage] 2020/02/11(火) 12:50:58.32 ID:gdPWLy3I 多分、第3者が...って話は時枝解法と選択公理の役割にケチをつけようと 思って言い始めたんだろうけど、結局当てられるはますます当たり前 ってことにしかならないのがバカ。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/132
133: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 13:09:45.78 ID:6xY3HAGO >>117 分布の話は、両名とも書かれています(下記) 確率論の専門家さん スレ20 https://rio2016.5ch.net/test/read.cgi/math/1466279209/532 532 2016/07/03 ID:f9oaWn8A >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう ジムさん スレ80 https://rio2016.5ch.net/test/read.cgi/math/1578091012/237-238 (抜粋) 237 2020/01/10 ID:jmw8DMZb 標本空間上の関数として選択公理を仮定する限り存在する。 選択公理でできた関数は使ってはいかないみたいな意見があるがそんなはずはない。 あるのは選択公理下では否定できない。 では何がダメか。 それはそれらの関数が単なる標本空間上のデタラメな関数ではダメでそれが可測関数にならないといけない事を無視しているから。 そもそも確率論において P(xxx|yyy) のxxx,yyyのとこには何を書いてもいいわけではなくそこにはそれらをみたす標本空間上のなす集合が可測集合になるようなものしか許されない。 したがって今回で言えばd(x)のようなものが可測関数として定義できているかが第一の問題。 238 2020/01/10(金) ID:jmw8DMZb まず時枝先生の記事の方法ではダメ。 記事の方法ではxやyをある番号以降全部開けてその値に応じて戦略を決定している。 つまり全事象をC(x)やC(y)などに応じて決定している事になるが、これだと全事象を非可算無限個に分割して定義している事になる。 しかしこのようにして定義された関数は一般には可測関数にならない。 場合わけして定義するのは構わないが、その時には可測な高々可算無限個までにわけて、その各々で可測関数として定義されている場合でなければ一般には標本空間上のただの関数でしかなく、可測集合の構成に利用できるような可測関数になるかどうかはわからない。 よって時枝戦略で重要な意味を持つd(x)などの関数はこのままでは可測関数になるかどうかはわからない 可測関数でなければそもそも確率そのものが定義できない ココが議論の第一点 しかしコレからジムに遊びに行くので続きはまた今度 http://rio2016.5ch.net/test/read.cgi/math/1581243504/133
134: 132人目の素数さん [] 2020/02/11(火) 13:10:44.37 ID:yCL40qf3 >>132 なんか、選択公理を否定したら数学全否定になると思ってるのかな? でも、否定されるのは非可算選択公理であって、 可算選択公理は認めるとすれば、通常の数学は 大概問題ないけどなあ http://rio2016.5ch.net/test/read.cgi/math/1581243504/134
135: 132人目の素数さん [] 2020/02/11(火) 13:12:29.38 ID:yCL40qf3 >>133 順序統計について、両名とも一切語ってませんね http://rio2016.5ch.net/test/read.cgi/math/1581243504/135
136: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 13:17:42.42 ID:6xY3HAGO >>123 >ここでは標本は箱ではなく列とします >この場合、列の数は有限ですから無限はでてきません だから、それがトリックでしょ 例えば、A国、B国、C国としましょうか 数学の試験をして、採点は1点刻みで、平均点は整数丸めとして、その国の代表を平均点を取った人から選ぶ その国の受験者数が多ければ、平均点を取った人も多数います。だれになるか分からない でも、代表は一人選ぶ、なんらかの方法で A国aさん、B国bさん、C国cさん でも、それがトリックでしょ http://rio2016.5ch.net/test/read.cgi/math/1581243504/136
137: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 13:20:49.16 ID:6xY3HAGO >>124 >そのような人が存在し得る、というのが選択公理です そのような人の能力が、 ・非可算の集合族からでも選ぶことが可能というのが、フルパワー選択公理 ・可算の集合族からでも選ぶことが可能というのが、可算選択公理 ・有限の集合族からでも選ぶことが可能というのが、有限選択公理(公理の取り方によっては、他の公理から証明できる場合もある) http://rio2016.5ch.net/test/read.cgi/math/1581243504/137
138: 132人目の素数さん [] 2020/02/11(火) 13:23:20.81 ID:pez17n4y >>133 >そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう はい、言えません 言えなくていいんですw バカには分からないだけ(^^; http://rio2016.5ch.net/test/read.cgi/math/1581243504/138
139: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 13:24:45.72 ID:6xY3HAGO >>125 そうそう、その考察いいですね ”・決定番号n+1以下の確率は 決定番号n以下の確率の10倍” 同意ですが 確率というより、場合の数でしょうね ”2列とる場合 ・決定番号の最大値がn+1以下の確率P[n+1]は 決定番号の最大値がn以下の確率P[n]の10^2=100倍” これ、合っていると思うが 細かい前提が不明です。2列だと決定番号はd1,d2とか二つ出ますよね http://rio2016.5ch.net/test/read.cgi/math/1581243504/139
140: 132人目の素数さん [] 2020/02/11(火) 13:33:46.00 ID:pez17n4y >>133 >よって時枝戦略で重要な意味を持つd(x)などの関数はこのままでは可測関数になるかどうかはわからない はい、非可測です。 非可測でいいんですw バカには分からないだけ(^^; http://rio2016.5ch.net/test/read.cgi/math/1581243504/140
141: 132人目の素数さん [] 2020/02/11(火) 13:37:10.90 ID:pez17n4y 反例まだ〜? ☆ チン マチクタビレタ〜 マチクタビレタ〜 ☆ チン 〃 ∧_∧ ヽ___\(\・∀・) \_/ ⊂ ⊂_) / ̄ ̄ ̄ ̄ ̄ /| | ̄ ̄ ̄ ̄ ̄ ̄| | | 愛媛みかん |/  ̄ ̄ ̄ ̄ ̄ ̄ http://rio2016.5ch.net/test/read.cgi/math/1581243504/141
142: 132人目の素数さん [] 2020/02/11(火) 13:37:27.40 ID:pez17n4y 証明のギャップまだ〜? ☆ チン マチクタビレタ〜 マチクタビレタ〜 ☆ チン 〃 ∧_∧ ヽ___\(\・∀・) \_/ ⊂ ⊂_) / ̄ ̄ ̄ ̄ ̄ /| | ̄ ̄ ̄ ̄ ̄ ̄| | | 愛媛みかん |/  ̄ ̄ ̄ ̄ ̄ ̄ http://rio2016.5ch.net/test/read.cgi/math/1581243504/142
143: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 13:42:03.42 ID:6xY3HAGO >>126 >決定番号の非可測性は時枝戦略を否定する材料にならない。 同意です 時枝さんの書いているヴィタリの話は、各同値類の代表全部から成る集合の非可測性で 実際に数当てパズルに使うのは、有限個ですから、代表全部に対する測度うんぬんは、無関係と考えています >自称確率論の専門家はそこを誤解している。 1.自称ではなく、確率論の専門家は私が勝手に付けた。かつ、「確率論の専門家さん」と”さん”を付けるのが、私の流儀です 2.「確率論の専門家さん」のいうのは、ジムさんと同じで、関数としての可測 or 非可測です。ヴィタリ類似の話とは微妙に異なる ヴィタリでは0も∞も含めて、如何なる測度も与えられない ですが、単に可測で良いなら、N(自然数全体)やR(実数全体)に、∞としての測度を与えることは可能です ジムさんも書いているが、確率論として扱うには、P(Ω)=1 かつ、A∈FでP(A)=p 0<=p<=1 でなければならない 3.確率理論としては、∞として測度を与えて、その上で、P(Ω)=1 かつ、A∈FでP(A)=p 0<=p<=1 の確率論が構築できるか? そういうことを、考えたのたが、コルモゴロフさんでしょ http://rio2016.5ch.net/test/read.cgi/math/1581243504/143
144: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 13:44:51.39 ID:6xY3HAGO >>140 >>よって時枝戦略で重要な意味を持つd(x)などの関数はこのままでは可測関数になるかどうかはわからない >はい、非可測です。 >非可測でいいんですw それは違うんじゃない? ww(^^; http://rio2016.5ch.net/test/read.cgi/math/1581243504/144
145: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 13:49:07.49 ID:6xY3HAGO >>134 (引用開始) なんか、選択公理を否定したら数学全否定になると思ってるのかな? でも、否定されるのは非可算選択公理であって、 可算選択公理は認めるとすれば、通常の数学は 大概問題ないけどなあ (引用終り) 殆ど同意ですよ 選択公理は否定していません 使っていい 但し、時枝戦略に限れば、フルパワーを必要としていないというだけ だから、”選択公理”を強調するのは、「いかにもパラドックスが起きるぞ」という、雰囲気づくりの意味でしかないよねと http://rio2016.5ch.net/test/read.cgi/math/1581243504/145
146: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 13:53:17.58 ID:6xY3HAGO >>135 >順序統計について、両名とも一切語ってませんね 順序統計について、ベースの順序集合が、有限でないと、理論的扱いは難しい 例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの前半分(前半)に来る確率は? 確率0ですよね これ、時枝のトリックの一つですね http://rio2016.5ch.net/test/read.cgi/math/1581243504/146
147: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 13:55:26.20 ID:6xY3HAGO >>146 訂正 例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの前半分(前半)に来る確率は? 確率0ですよね ↓ 例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの後ろ半分(後半)に来る確率は? 確率0ですよね http://rio2016.5ch.net/test/read.cgi/math/1581243504/147
148: 132人目の素数さん [] 2020/02/11(火) 13:55:40.11 ID:pez17n4y >>143 >実際に数当てパズルに使うのは、有限個ですから、代表全部に対する測度うんぬんは、無関係と考えています いいえ、すべての代表を使います。 不定な代表からは情報をもらえませんから。 非可算選択公理は必須です。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/148
149: 132人目の素数さん [] 2020/02/11(火) 13:56:45.29 ID:pez17n4y >>144 なにが違うと? http://rio2016.5ch.net/test/read.cgi/math/1581243504/149
150: 132人目の素数さん [sage] 2020/02/11(火) 13:56:46.78 ID:gdPWLy3I >>145 >但し、時枝戦略に限れば、フルパワーを必要としていないというだけ いやいや、出題者がR^Nの中から自由に出題できるなら、"必ず"解法が成立する というためには、あなたの言うところの"フルパワー"の選択公理が必要ですよ。 そんなことも分からんの? http://rio2016.5ch.net/test/read.cgi/math/1581243504/150
151: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 13:58:03.61 ID:6xY3HAGO >>147 補足 間違った 普通の順序 0<1<2・・・<n<n+1<・・・ を入れると 有限の数nは、自然数N全体の前半に来ますから 例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの前半分(前半)に来る確率は? 確率1ですね でも、こういう素朴な確率が、正当化できるかどうかは、大きな問題なのです(^^; http://rio2016.5ch.net/test/read.cgi/math/1581243504/151
152: 132人目の素数さん [] 2020/02/11(火) 13:59:36.42 ID:pez17n4y >>145 >但し、時枝戦略に限れば、フルパワーを必要としていないというだけ いいえ、必須です >だから、”選択公理”を強調するのは、「いかにもパラドックスが起きるぞ」という、雰囲気づくりの意味でしかないよねと うわぁ 恥ずかしいこと言ってるなあ あなた数学のすの字も分かってないですね(^^; http://rio2016.5ch.net/test/read.cgi/math/1581243504/152
153: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2020/02/11(火) 14:01:03.82 ID:6xY3HAGO >>150 >いやいや、出題者がR^Nの中から自由に出題できるなら、"必ず"解法が成立する >というためには、あなたの言うところの"フルパワー"の選択公理が必要ですよ。 必要ないでしょ 2列なら、代表2つで済む 100列なら、代表100個で済む 代表を決めるタイミングは、後にずらすことは、理論上可能ですよ http://rio2016.5ch.net/test/read.cgi/math/1581243504/153
154: 132人目の素数さん [] 2020/02/11(火) 14:02:51.13 ID:pez17n4y >>146 >これ、時枝のトリックの一つですね はぁ? なにアホなこと言ってんの? http://rio2016.5ch.net/test/read.cgi/math/1581243504/154
155: 132人目の素数さん [sage] 2020/02/11(火) 14:05:23.99 ID:gdPWLy3I >>153 まだ言ってるバカ。学習しないバカ。 第3者が出題された後に「カンニング」して代表元を作ればねw でも、時枝解法にそんな前提はありませんね。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/155
156: 132人目の素数さん [] 2020/02/11(火) 14:07:07.81 ID:pez17n4y >>151 >でも、こういう素朴な確率が、正当化できるかどうかは、大きな問題なのです(^^; それ、時枝戦略とは関係ありません。 時枝戦略では100個の(重複を許す)自然数しか扱いませんので。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/156
157: 132人目の素数さん [] 2020/02/11(火) 14:08:14.95 ID:pez17n4y >>153 >代表を決めるタイミングは、後にずらすことは、理論上可能ですよ 不可能です 不定な代表から情報はもらえませんから http://rio2016.5ch.net/test/read.cgi/math/1581243504/157
158: 132人目の素数さん [] 2020/02/11(火) 14:12:22.07 ID:pez17n4y >>153 100列だけ代表を決めようとすれば、その100列が分かった後、つまり箱を開けた後でないと決められない。 しかし箱を開けたらそもそも数当てゲームにならないw バカ過ぎw http://rio2016.5ch.net/test/read.cgi/math/1581243504/158
159: 132人目の素数さん [sage] 2020/02/11(火) 14:12:30.15 ID:gdPWLy3I だいたい、誰も開けてない箱の中身を当てるから驚きがあるんで 誰かがカンニングした後で情報もらって当てられるというなら 当たり前だな〜ということにしかならない。 しかも◆e.a0E5TtKE の主張したい「当てられない」ということとは 真逆の結果になるだけw http://rio2016.5ch.net/test/read.cgi/math/1581243504/159
160: 132人目の素数さん [sage] 2020/02/11(火) 14:32:12.61 ID:gdPWLy3I 第3者が代表元を作る際、すべての箱を開ける必要はない。 しかし、第3者が開封済の箱を解答者が再び開けてはならないという法はない。 第3者が代表元100列を作ったあとで時枝解法を実行すると 解答者は第3者が開封済で代表元と一致させた番号の箱を 99/100の確率で選ぶことになるだけですね。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/160
161: 132人目の素数さん [sage] 2020/02/11(火) 14:34:49.72 ID:gdPWLy3I >第3者が開封済の箱を解答者が再び開けてはならないという法はない。 第3者が開封済の箱を解答者が開けずに当てる箱として残してはならないという法はない。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/161
162: 132人目の素数さん [] 2020/02/11(火) 14:35:03.18 ID:pez17n4y >>153 s^kのD+1番目以降の箱を開けてはじめてr^kを決められるが、r^kのD以前の項はどうやって決めるの? 当てずっぽうで決めたらs^kのD項目も当てずっぽうでしか数当てできないよ? バカ? http://rio2016.5ch.net/test/read.cgi/math/1581243504/162
163: 132人目の素数さん [] 2020/02/11(火) 14:37:33.44 ID:pez17n4y >>162の状況を「不定な代表からは情報をもらえない」と表現してるんだが、バカには理解できないみたいだねw http://rio2016.5ch.net/test/read.cgi/math/1581243504/163
164: 132人目の素数さん [] 2020/02/11(火) 14:44:27.68 ID:pez17n4y ていうかこんな簡単なことさえ理解せずに「選択公理不要」と言い続けてる時点で、時枝戦略をまったく理解してないと白状してるのと同じことw しかしサイコパスだからスレ閉鎖の約束も守らない ほんとクズだね http://rio2016.5ch.net/test/read.cgi/math/1581243504/164
165: 132人目の素数さん [] 2020/02/11(火) 14:50:08.18 ID:pez17n4y バカは許す しかし嘘・捏造・詐欺・約束違反の類は許さない これら悪質行為は徹底的に叩く http://rio2016.5ch.net/test/read.cgi/math/1581243504/165
166: 132人目の素数さん [sage] 2020/02/11(火) 15:14:48.75 ID:Ft3PUJtH おっちゃんです。 >>54 >>40-41のCase2、Case3の議論は間違っている。 それらを軌道修正して、訂正すれば問題ないとは思う。 Case3の議論は、Case2のような議論に帰着される。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/166
167: 132人目の素数さん [] 2020/02/11(火) 15:23:05.28 ID:pez17n4y こんな初歩の初歩も分らんバカが反例だの証明のギャップだのとw バカ過ぎw http://rio2016.5ch.net/test/read.cgi/math/1581243504/167
168: 132人目の素数さん [sage] 2020/02/11(火) 15:27:47.01 ID:Ft3PUJtH 或る3以上の整数nが存在して、何れも或る3つの正整数 x、y、z が存在して、x^n+y^n=z^n が成り立つとする。 Euclid 平面 R^2 上の半径1の円周をCで表す。 仮定から、nは3以上の整数だから、仮定で成り立つとした等式 x^n+y^n=z^n から、 3つの正整数 x、y、z の大小関係について、0<x<z、0<y<z が両方共に成り立つ。 仮定から x、y、z は何れも有理整数だから、x、y、z∈Z。また、有理数体Qは有理整数環Zの商体だから、Z⊂Q。 よって、z>0 から、x/z、y/z∈Q。0<x<z だから、0<x/z<1。同様に、0<y<z だから、0<y/z<1。 平面 R^2 上で点 A(x/z,y/z) と原点 O(0,0) とを結ぶ線分と、x軸正方向とのなす角をθとする。 0<x/z<1、0<y/z<1 が両方共に成り立つから、0<θ<π/2 である。 平面 R^2 上の半径1の円周上には、a^2+b^2=1、0≦|a|≦1、0≦|b|≦1 を何れも満たしているような有理点 (a,b) が稠密に分布する。 逆に、a^2+b^2=1、0≦|a|≦1、0≦|b|≦1 を何れも満たしているような有理点 (a,b) は、すべて平面 R^2 上の半径1の円周上に存在する。 このことに注意して、有理点 A(x/z,y/z) が存在する位置について場合分けをする。 Case1):平面 R^2 上の半径1の円周上に有理点 A(x/z,y/z) は存在するとき。 0<x/z<1、0<y/z<1 から、確かに平面 R^2 上の半径1の円周上に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2=1 を満たすことになる。 θの定義と 0<θ<π/2、0<x/z<1 から、cos(θ)=x/z。同様に、θの定義と 0<θ<π/2、0<y/z<1 から、sin(θ)=y/z。 仮定において成り立つとした等式 x^n+y^n=z^n から、(x/z)^n+(y/z)^n=1。よって、cos^n(θ)+sin^n(θ)=1 となる。 しかし、仮定から n≧3 であり、0<θ<π/2 から 0<cos(θ)=x/z<1、0<sin(θ)=y/z<1 だから、 0<cos^n(θ)+sin^n(θ)<1 から cos^n(θ)+sin^n(θ)≠1 となって矛盾が生じる。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/168
169: 132人目の素数さん [sage] 2020/02/11(火) 15:30:14.52 ID:Ft3PUJtH (>>168の続き) Case2):平面 R^2 上の半径1の円周で囲まれた円の中に有理点 A(x/z,y/z) が存在するとき。 このとき、確かに平面 R^2 上の半径1の円周で囲まれた円の中に有理点 A(x/z,y/z) は存在して、(x/z)^2+(y/z)^2<1 を満たす。 3つの正整数x、y、zについて、0<x<z かつ 0<y<z なることと 0<x/z<1 かつ 0<y/z<1 こととは同値である。 また、確かに 0<x/z<1 かつ 0<y/z<1 である。よって、確かに平面 R^2 上の半径zの円周で囲まれた円の中に 有理点 B(x,y) は存在し、x^2+y^2<z^2 を満たす。0<x<z、0<y<z から、平面 R^2 上において、 3点 O(0,0)、A(x/z,y/z)、B(x,y) はその順に一直線上に並んでいるから、 θの定義と 0<θ<π/2、0<x/z<1 から、或る1より大きい実数rが存在して、cos(θ)=(rx)/z。 このとき、同様に考えると、θの定義と 0<θ<π/2、0<y/z<1 から、sin(θ) はrを用いて sin(θ)=(ry)/z と表わされる。 よって、cos^2(θ)+sin^2(θ)=1 から、(x/z)^2+(y/z)^2=(1/r)^2 となる。 故に、r>1 から (x/z)^2+(y/z)^2<1。仮定から n≧3 だから、(x/z)^n+(y/z)^n<1。 しかし、これは仮定で等式 (x/z)^n+(y/z)^n=1 が成り立つと仮定したことに反し矛盾が生じる。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/169
170: 132人目の素数さん [] 2020/02/11(火) 15:30:24.18 ID:yCL40qf3 >>145 >順序統計について、ベースの順序集合が、有限でないと、理論的扱いは難しい 確率分布関数、累積分布関数が考えられるなら 順序集合(分布の範囲)は無限でも問題ない >例えば、自然数全体Nを考えると、ある有限のn∈Nで、 >自然数全体Nの前半分(前半)に来る確率は? 「半分」? 「n以下の確率」の意味? >確率0ですよね 分布によるが、0でない場合は当然ある https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E5%88%86%E5%B8%83 http://rio2016.5ch.net/test/read.cgi/math/1581243504/170
171: 132人目の素数さん [] 2020/02/11(火) 15:32:26.11 ID:yCL40qf3 >>146-147 >順序統計について、ベースの順序集合が、有限でないと、理論的扱いは難しい 確率分布関数、累積分布関数が考えられるなら 順序集合(分布の範囲)は無限でも問題ない >例えば、自然数全体Nを考えると、ある有限のn∈Nで、 >自然数全体Nの前半分(前半)に来る確率は? 「半分」? 「n以下の確率」の意味? >確率0ですよね 分布によるが、0でない場合は当然ある https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E5%88%86%E5%B8%83 http://rio2016.5ch.net/test/read.cgi/math/1581243504/171
172: 132人目の素数さん [sage] 2020/02/11(火) 15:32:42.24 ID:Ft3PUJtH (>>169の続き) Case3):平面 R^2 上の半径1の円周で囲まれた円の外側に有理点 A(x/z,y/z) が存在するとき。 このとき、確かに平面 R^2 上の半径1の円周で囲まれた円の外側に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2>1 を満たす。 よって、x^2+y^2>z^2 を得る。故に、平面 R^2 上の半径zの円周で囲まれた円の外側に有理点 B(x,y) は存在する。 3つの正整数x、y、zについて、0<x<z かつ 0<y<z なることと 0<x/z<1 かつ 0<y/z<1 こととは同値である。 また、確かに 0<x<z かつ 0<y<z だから、x^2+y^2<4z^2。よって、x^2+y^2<(2z)^2 から ( x/(2z) )^2+( y/(2z) )^2<1 を得る。 zは正整数だから、2zは正整数である。よって、有理点 C(x/(2z),y/(2z)) は平面 R^2 上の半径1の円周で囲まれた円の中に存在する。 3つの正整数x、y、2zについて、0<x<2z かつ 0<y<2z なることと 0<x/(2z)<1 かつ 0<y/(2z)<1 なることとは同値である。 また、確かに 0<x<2z かつ 0<y<2z である。よって、確かに 0<x/(2z)<1 かつ 0<y/(2z)<1 である。 平面 R^2 上において、4つの有理点 O(0,0)、C(x/(2z),y/(2z))、A(x/z,y/z)、B(x,y) はその順に一直線上に並んでいるから、 (x/(2z))^2+(y/(2z))^2<1 に注意すると、θの定義と 0<θ<π/2、0<x/(2z)<1 から、 或る2より大きい実数sが存在して、cos(θ)=(sx)/(2z)。このとき、同様に考えると、θの定義と 0<θ<π/2、0<y/(2z)<1 から、 sin(θ) はsを用いて sin(θ)=(sy)/(2z) と表わされる。よって、cos^2(θ)+sin^2(θ)=1 から、(x/z)^2+(y/z)^2=(2/s)^2 を得る。 故に、s>2 から (x/z)^2+(y/z)^2<1。仮定から n≧3 だから、(x/z)^n+(y/z)^n<1。 しかし、これは仮定で等式 (x/z)^n+(y/z)^n=1 が成り立つと仮定したことに反し矛盾が生じる。 Case1)、Case2)、Case3)から、有理点 A(x/z,y/z) が存在し得る位置について、何れの場合においても矛盾が生じる。 背理法が適用出来るから、背理法を適用すれば、どんな3以上の整数nに対しても、x^n+y^n=z^n を満たす3つの正整数x、y、zは存在しない。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/172
173: 132人目の素数さん [] 2020/02/11(火) 15:34:26.19 ID:yCL40qf3 >>151 >普通の順序 >0<1<2・・・<n<n+1<・・・ >を入れると >有限の数nは、自然数N全体の前半に来ます 前半、後半はどこで分かるんですか? 数学では、そういう言い方はしないですよ http://rio2016.5ch.net/test/read.cgi/math/1581243504/173
174: 132人目の素数さん [] 2020/02/11(火) 15:38:10.19 ID:yCL40qf3 >>139 >>”2列とる場合 >>・決定番号の最大値がn+1以下の確率P[n+1]は >> 決定番号の最大値がn以下の確率P[n]の10^2=100倍” >細かい前提が不明です。2列だと決定番号はd1,d2とか二つ出ますよね 「決定番号の最大値」と書いてますから細かい前提まで明らかですね d1、d2のうち大きい方が最大値 http://rio2016.5ch.net/test/read.cgi/math/1581243504/174
175: 132人目の素数さん [] 2020/02/11(火) 15:45:09.31 ID:yCL40qf3 離散確率分布あるいは離散的な関数で考える場合 積分・微分の代わりに和分・差分を使う必要がある その場合、 最大値をとる変数が2つ以上になる確率が0より大きくなる場合があるので、 99個中の最大値より最後の値が大きくなる確率が1/100という 綺麗な結果にならない(1/100より小さくなる) 積分の値が1でない場合も有限であれば ∫F_X(99)(x)f(x)dx =∫F(x)^99(dF(x)/dx)dx =∫F^99dF =1/100[F^100] までは出ますね http://rio2016.5ch.net/test/read.cgi/math/1581243504/175
176: 132人目の素数さん [] 2020/02/11(火) 15:54:08.24 ID:yCL40qf3 「箱入り無数目」の場合、 決定番号別の確率を考えることはできない 確率の代わりに頻度(全体が∞)を考えるとしても 積分値を∞としないために、上限Dをもうけて積分を打ち切る必要がある 逆に言うと∞を無理矢理1、有限値を無理矢理0とすると 「任意のn個についてn個の確率変数の最大値よりも あらたな1個の確率変数の値が上回る確率は1」 とかいうおかしな結果がでるが、この場合、そもそも 可算加法性を有しないので、積分を考えることができない http://rio2016.5ch.net/test/read.cgi/math/1581243504/176
177: 132人目の素数さん [] 2020/02/11(火) 16:01:47.13 ID:yCL40qf3 「箱入り無数目」で決定番号の分布を無理矢理考えると 「決定番号が自然数nをとる確率が0」 というようなおかしな結果がでる 上記がおかしな結果だというのは 決定番号が自然数の値をとることは 決定番号の定義から明らかだからである つまりおかしな結果が出た理由は 確率分布が考えられないにも関わらず 無理やり確率分布を考えたからである http://rio2016.5ch.net/test/read.cgi/math/1581243504/177
178: 132人目の素数さん [] 2020/02/11(火) 16:01:50.65 ID:pez17n4y 決定番号の分布なんて時枝戦略には一切不要ですけどね。 100列作れば100個の決定番号がある、それだけの条件で時枝戦略は成立しますから。 そしてその条件を保証するのが選択公理。 だから 選択公理 ⇒ 時枝定理 http://rio2016.5ch.net/test/read.cgi/math/1581243504/178
179: 132人目の素数さん [] 2020/02/11(火) 16:05:06.51 ID:yCL40qf3 >>178 >決定番号の分布なんて時枝戦略には一切不要ですけどね。 もちろん必要ありません また、任意の実数列100列について成立する、 という主張ですから選択公理は必要です http://rio2016.5ch.net/test/read.cgi/math/1581243504/179
180: 132人目の素数さん [sage] 2020/02/11(火) 16:10:07.34 ID:Ft3PUJtH >>172の s>2 はもしかしたら間違いかも知れない。 図を描いて見ないと分からない。 Case3の議論はもっと長くなるかもしれない。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/180
181: 132人目の素数さん [sage] 2020/02/11(火) 16:15:30.58 ID:Ft3PUJtH 多分、0<s<2 か。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/181
182: 132人目の素数さん [] 2020/02/11(火) 16:28:53.44 ID:yCL40qf3 箱の中身が{0,…n-1}のn種類だとした場合 計算の仕方によっては、2列の決定番号の一致確率が(n-1)/nになる nが∞に近づくにつれ、(n-1)/nは1に近づく 注)「計算の仕方によっては」に注意 つまり確率の値が計算の仕方に依存する、という意味 http://rio2016.5ch.net/test/read.cgi/math/1581243504/182
183: 132人目の素数さん [] 2020/02/11(火) 16:30:39.69 ID:pez17n4y >>180 >間違いかも知れない 今後はチェック完了後に書き込むようにして下さい http://rio2016.5ch.net/test/read.cgi/math/1581243504/183
184: 132人目の素数さん [] 2020/02/11(火) 16:35:42.17 ID:yCL40qf3 >>182 訂正 (n-1)/n→(n-1)/(n+1) 箱の中身が{0,…n-1}のn種類だとした場合 計算の仕方によっては、2列の決定番号の一致確率が(n-1)/(n+1)になる nが∞に近づくにつれ、(n-1)/(n+1)は1に近づく http://rio2016.5ch.net/test/read.cgi/math/1581243504/184
185: 132人目の素数さん [] 2020/02/11(火) 16:38:11.42 ID:yCL40qf3 >>183 チェックで癲癇の発作が起きても困るんで 本当は数学のような難しいことはやめたほうがいいと思う http://rio2016.5ch.net/test/read.cgi/math/1581243504/185
186: 132人目の素数さん [sage] 2020/02/11(火) 16:39:07.37 ID:Ft3PUJtH >>183 分かった。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/186
187: 132人目の素数さん [sage] 2020/02/11(火) 16:47:20.98 ID:Ft3PUJtH >>185 持病のことはそんなに気にしなくていい。 予測出来ない持病の症状の発症を気にしたら、却ってストレスが溜まる。 そういうのは、なるようにしかならない。 むしろ、歯の状態の方が気になる。 http://rio2016.5ch.net/test/read.cgi/math/1581243504/187
188: 132人目の素数さん [] 2020/02/11(火) 17:03:17.53 ID:pez17n4y 反例まだ〜? ☆ チン マチクタビレタ〜 マチクタビレタ〜 ☆ チン 〃 ∧_∧ ヽ___\(\・∀・) \_/ ⊂ ⊂_) / ̄ ̄ ̄ ̄ ̄ /| | ̄ ̄ ̄ ̄ ̄ ̄| | | 愛媛みかん |/  ̄ ̄ ̄ ̄ ̄ ̄ http://rio2016.5ch.net/test/read.cgi/math/1581243504/188
189: 132人目の素数さん [] 2020/02/11(火) 17:03:34.15 ID:pez17n4y 証明のギャップまだ〜? ☆ チン マチクタビレタ〜 マチクタビレタ〜 ☆ チン 〃 ∧_∧ ヽ___\(\・∀・) \_/ ⊂ ⊂_) / ̄ ̄ ̄ ̄ ̄ /| | ̄ ̄ ̄ ̄ ̄ ̄| | | 愛媛みかん |/  ̄ ̄ ̄ ̄ ̄ ̄ http://rio2016.5ch.net/test/read.cgi/math/1581243504/189
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 813 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.018s