[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む83 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
109(2): 2020/02/11(火)07:08 ID:yCL40qf3(1/44) AAS
>>108
そもそも現実世界には無限個の箱はないだろ
あったとしても、実数の無限列s、s’に対して
「sとs’がある箇所から先一致する」
と判定する手続きがないだろ
(これ言い出すとそもそも尻尾の同値類が
構成できないということになる)
省4
110(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)08:48 ID:CB29Ozfy(1/13) AAS
>>97 追加
外部リンク[pdf]:ocw.u-tokyo.ac.jp
学術俯瞰講義 〜数学を創る〜 第2回 東京大学
Mathematics ‘‘On Campus’’
ことばを創り、世界を創る
2009.10.15
de Fermat. (1601.8.20-. 1665 1 12).1.12). フランスの. トゥールーズの人. 「数論の父」 ... フェルマーの最終定理before 1986. フェルマーの最終定理before 1986. ? 超有名で、. 歴史的に重要. ? 歴史的に重要. 代数的整数論の確立(クンマー) ...
省17
111(1): 2020/02/11(火)10:24 ID:yCL40qf3(2/44) AAS
「確率論の専門家」も「ジム」も語らなかったこと
順序統計量
外部リンク:ja.wikipedia.org
「順序統計量(じゅんじょとうけいりょう、英: order statistic)は、
統計において k 番目に小さい値である標本を求めることをいう。
いま X1, X2,..., Xn は 無作為抽出での標本であるとする。
すなわち、同一分布に従い、互いに独立 である(i.i.d.)とする。
省15
112(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)11:24 ID:6xY3HAGO(1/17) AAS
>>109
>そもそも現実世界には無限個の箱はないだろ
>あったとしても、実数の無限列s、s’に対して
>「sとs’がある箇所から先一致する」
>と判定する手続きがないだろ
>(これ言い出すとそもそも尻尾の同値類が
> 構成できないということになる)
省15
113(1): 2020/02/11(火)11:31 ID:yCL40qf3(3/44) AAS
>>112
>コーシー列で定義された二つの異なる実数r,r' の区別が出来ない
rとr'の定義次第で、できるときもある
むしろ、ほとんど全ての実数は人力では構成不能、
という点のほうが重要かと思われ
114(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)11:32 ID:6xY3HAGO(2/17) AAS
>>109
>で、上記の同値関係の判定ができたとしても
>同値類の代表元r(s)を返す関数rが
>具体的に構成できないだろ
>(rは選択公理で存在が云えるだけのこと)
(>>22より)
可算無限数列 s=(s1,s2,・・sd,sd+1・・)に対し
省8
115: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)11:36 ID:6xY3HAGO(3/17) AAS
>>113
>むしろ、ほとんど全ての実数は人力では構成不能、
>という点のほうが重要かと思われ
それ同意です
実際、おっちゃんが研究して、オイラー定数γは、有理数ではないかというが
現実に、現代の数学でも未解決問題
もし、人間に任意の無限数列のシッポを見極める能力があれば、
省1
116(1): 2020/02/11(火)11:41 ID:yCL40qf3(4/44) AAS
>>114
回答者は箱を開けた中身がどんな列か予測できないので
The Riddleで100人の回答者が共通の代表元を選ぶとするなら
全ての同値類の代表元をあらかじめ決める必要がありますね
そのための選択公理ということです
100人の回答者が共通の代表元を選べない、というなら
選択公理は成立しないことになりますね
117(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)11:42 ID:6xY3HAGO(4/17) AAS
>>111
>「確率論の専門家」も「ジム」も語らなかったこと
>順序統計量
> 外部リンク:ja.wikipedia.org
うん
それも良い考察ですね
一つ指摘しておけば
省4
118(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)11:46 ID:6xY3HAGO(5/17) AAS
>>116
>The Riddleで100人の回答者が共通の代表元を選ぶとするなら
>全ての同値類の代表元をあらかじめ決める必要がありますね
代表を決定する人を一人立てれば良い
その人は、可算無限数列をもらって、同値類と代表を一つ返す(まあ、関数みたいな役割です)
その人は、それだけを仕事とする。それ以外の一切の情報を出さないとすれば
100人の回答者の得る代表は、一意に決まる
119: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)11:47 ID:6xY3HAGO(6/17) AAS
>>118 補足
>その人は、それだけを仕事とする。それ以外の一切の情報を出さないとすれば
100人の間の情報連絡役にはならないという意味ね(^^
120: 2020/02/11(火)11:55 ID:pez17n4y(2/45) AAS
>>114
時枝戦略では選択公理が必要
不定な代表からは情報をもらえないから
分かってないバカは黙ってろ
121: 2020/02/11(火)11:55 ID:pez17n4y(3/45) AAS
AA省
122: 2020/02/11(火)11:56 ID:pez17n4y(4/45) AAS
AA省
123(1): 2020/02/11(火)11:58 ID:yCL40qf3(5/44) AAS
>>117
ここでは標本は箱ではなく列とします
この場合、列の数は有限ですから無限はでてきません
決定番号の確率分布関数は定義できませんが
決定番号0の確率を基準として
決定番号1,2,3、・・・の各場合の確率を比として表すことは可能です
そしてこのような関数で代用した場合の計算を行った場合
省1
124(1): 2020/02/11(火)12:00 ID:yCL40qf3(6/44) AAS
>>118
>代表を決定する人を一人立てれば良い
そのような人が存在し得る、というのが選択公理です
125(2): 2020/02/11(火)12:11 ID:yCL40qf3(7/44) AAS
箱に入れる数を、0〜9の整数に限るとします
そのとき
・決定番号n+1以下の確率は
決定番号n以下の確率の10倍
2列とる場合
・決定番号の最大値がn+1以下の確率P[n+1]は
決定番号の最大値がn以下の確率P[n]の10^2=100倍
省8
126(1): 2020/02/11(火)12:13 ID:pez17n4y(5/45) AAS
>>117
決定番号の非可測性は時枝戦略を否定する材料にならない。
もし「100列のうちのある列がアタリである確率」が必要なら材料になるが。
自称確率論の専門家はそこを誤解している。
127: 2020/02/11(火)12:14 ID:yCL40qf3(8/44) AAS
>>125
訂正 91→81
−−−
箱に入れる数を、0〜9の整数に限るとします
そのとき
・決定番号n+1以下の確率は
決定番号n以下の確率の10倍
省11
128(1): 2020/02/11(火)12:15 ID:gdPWLy3I(4/11) AAS
多分、この工学バカは100列の中身を見て代表元を作る第3者がいれば
100列だけの代表元だけで事足りるって言いたいんじゃないかな。
でもさ、そんな第3者がいたとして、そのひとは箱の中身を全部見てるんだから
その情報使えば当てられるのはますます当たり前ってことになるよね。
ほんとバカだね。
129: 2020/02/11(火)12:19 ID:yCL40qf3(9/44) AAS
>>128
100列を定数とするならそういう考え方もありますね
その場合、数セミの記事は無条件で成立することになりますね
130: 2020/02/11(火)12:34 ID:pez17n4y(6/45) AAS
仲間にカンニングさせれば当てられますってかw バカ丸出しですなw
131: 2020/02/11(火)12:43 ID:gdPWLy3I(5/11) AAS
そんな第3者がいれば当てられるのは当たり前。
しかし選択公理は実はそれと同じ役割をしている。
だから、時枝解法成立は当たり前ってことにしかならないから自爆w
132(1): 2020/02/11(火)12:50 ID:gdPWLy3I(6/11) AAS
多分、第3者が...って話は時枝解法と選択公理の役割にケチをつけようと
思って言い始めたんだろうけど、結局当てられるはますます当たり前
ってことにしかならないのがバカ。
133(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)13:09 ID:6xY3HAGO(7/17) AAS
>>117
分布の話は、両名とも書かれています(下記)
確率論の専門家さん
スレ20 2chスレ:math
532 2016/07/03 ID:f9oaWn8A
>2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
省25
134(1): 2020/02/11(火)13:10 ID:yCL40qf3(10/44) AAS
>>132
なんか、選択公理を否定したら数学全否定になると思ってるのかな?
でも、否定されるのは非可算選択公理であって、
可算選択公理は認めるとすれば、通常の数学は
大概問題ないけどなあ
135(1): 2020/02/11(火)13:12 ID:yCL40qf3(11/44) AAS
>>133
順序統計について、両名とも一切語ってませんね
136: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)13:17 ID:6xY3HAGO(8/17) AAS
>>123
>ここでは標本は箱ではなく列とします
>この場合、列の数は有限ですから無限はでてきません
だから、それがトリックでしょ
例えば、A国、B国、C国としましょうか
数学の試験をして、採点は1点刻みで、平均点は整数丸めとして、その国の代表を平均点を取った人から選ぶ
その国の受験者数が多ければ、平均点を取った人も多数います。だれになるか分からない
省3
137: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)13:20 ID:6xY3HAGO(9/17) AAS
>>124
>そのような人が存在し得る、というのが選択公理です
そのような人の能力が、
・非可算の集合族からでも選ぶことが可能というのが、フルパワー選択公理
・可算の集合族からでも選ぶことが可能というのが、可算選択公理
・有限の集合族からでも選ぶことが可能というのが、有限選択公理(公理の取り方によっては、他の公理から証明できる場合もある)
138: 2020/02/11(火)13:23 ID:pez17n4y(7/45) AAS
>>133
>そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
はい、言えません
言えなくていいんですw
バカには分からないだけ(^^;
139(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)13:24 ID:6xY3HAGO(10/17) AAS
>>125
そうそう、その考察いいですね
”・決定番号n+1以下の確率は
決定番号n以下の確率の10倍”
同意ですが
確率というより、場合の数でしょうね
”2列とる場合
省4
140(1): 2020/02/11(火)13:33 ID:pez17n4y(8/45) AAS
>>133
>よって時枝戦略で重要な意味を持つd(x)などの関数はこのままでは可測関数になるかどうかはわからない
はい、非可測です。
非可測でいいんですw
バカには分からないだけ(^^;
141: 2020/02/11(火)13:37 ID:pez17n4y(9/45) AAS
AA省
142: 2020/02/11(火)13:37 ID:pez17n4y(10/45) AAS
AA省
143(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)13:42 ID:6xY3HAGO(11/17) AAS
>>126
>決定番号の非可測性は時枝戦略を否定する材料にならない。
同意です
時枝さんの書いているヴィタリの話は、各同値類の代表全部から成る集合の非可測性で
実際に数当てパズルに使うのは、有限個ですから、代表全部に対する測度うんぬんは、無関係と考えています
>自称確率論の専門家はそこを誤解している。
1.自称ではなく、確率論の専門家は私が勝手に付けた。かつ、「確率論の専門家さん」と”さん”を付けるのが、私の流儀です
省6
144(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)13:44 ID:6xY3HAGO(12/17) AAS
>>140
>>よって時枝戦略で重要な意味を持つd(x)などの関数はこのままでは可測関数になるかどうかはわからない
>はい、非可測です。
>非可測でいいんですw
それは違うんじゃない?
ww(^^;
145(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)13:49 ID:6xY3HAGO(13/17) AAS
>>134
(引用開始)
なんか、選択公理を否定したら数学全否定になると思ってるのかな?
でも、否定されるのは非可算選択公理であって、
可算選択公理は認めるとすれば、通常の数学は
大概問題ないけどなあ
(引用終り)
省5
146(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)13:53 ID:6xY3HAGO(14/17) AAS
>>135
>順序統計について、両名とも一切語ってませんね
順序統計について、ベースの順序集合が、有限でないと、理論的扱いは難しい
例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの前半分(前半)に来る確率は?
確率0ですよね
これ、時枝のトリックの一つですね
147(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)13:55 ID:6xY3HAGO(15/17) AAS
>>146 訂正
例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの前半分(前半)に来る確率は?
確率0ですよね
↓
例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの後ろ半分(後半)に来る確率は?
確率0ですよね
148: 2020/02/11(火)13:55 ID:pez17n4y(11/45) AAS
>>143
>実際に数当てパズルに使うのは、有限個ですから、代表全部に対する測度うんぬんは、無関係と考えています
いいえ、すべての代表を使います。
不定な代表からは情報をもらえませんから。
非可算選択公理は必須です。
149: 2020/02/11(火)13:56 ID:pez17n4y(12/45) AAS
>>144
なにが違うと?
150(1): 2020/02/11(火)13:56 ID:gdPWLy3I(7/11) AAS
>>145
>但し、時枝戦略に限れば、フルパワーを必要としていないというだけ
いやいや、出題者がR^Nの中から自由に出題できるなら、"必ず"解法が成立する
というためには、あなたの言うところの"フルパワー"の選択公理が必要ですよ。
そんなことも分からんの?
151(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)13:58 ID:6xY3HAGO(16/17) AAS
>>147 補足
間違った
普通の順序
0<1<2・・・<n<n+1<・・・
を入れると
有限の数nは、自然数N全体の前半に来ますから
例えば、自然数全体Nを考えると、ある有限のn∈Nで、自然数全体Nの前半分(前半)に来る確率は?
省2
152: 2020/02/11(火)13:59 ID:pez17n4y(13/45) AAS
>>145
>但し、時枝戦略に限れば、フルパワーを必要としていないというだけ
いいえ、必須です
>だから、”選択公理”を強調するのは、「いかにもパラドックスが起きるぞ」という、雰囲気づくりの意味でしかないよねと
うわぁ 恥ずかしいこと言ってるなあ
あなた数学のすの字も分かってないですね(^^;
153(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/11(火)14:01 ID:6xY3HAGO(17/17) AAS
>>150
>いやいや、出題者がR^Nの中から自由に出題できるなら、"必ず"解法が成立する
>というためには、あなたの言うところの"フルパワー"の選択公理が必要ですよ。
必要ないでしょ
2列なら、代表2つで済む
100列なら、代表100個で済む
代表を決めるタイミングは、後にずらすことは、理論上可能ですよ
154: 2020/02/11(火)14:02 ID:pez17n4y(14/45) AAS
>>146
>これ、時枝のトリックの一つですね
はぁ? なにアホなこと言ってんの?
155: 2020/02/11(火)14:05 ID:gdPWLy3I(8/11) AAS
>>153
まだ言ってるバカ。学習しないバカ。
第3者が出題された後に「カンニング」して代表元を作ればねw
でも、時枝解法にそんな前提はありませんね。
156: 2020/02/11(火)14:07 ID:pez17n4y(15/45) AAS
>>151
>でも、こういう素朴な確率が、正当化できるかどうかは、大きな問題なのです(^^;
それ、時枝戦略とは関係ありません。
時枝戦略では100個の(重複を許す)自然数しか扱いませんので。
157: 2020/02/11(火)14:08 ID:pez17n4y(16/45) AAS
>>153
>代表を決めるタイミングは、後にずらすことは、理論上可能ですよ
不可能です
不定な代表から情報はもらえませんから
158: 2020/02/11(火)14:12 ID:pez17n4y(17/45) AAS
>>153
100列だけ代表を決めようとすれば、その100列が分かった後、つまり箱を開けた後でないと決められない。
しかし箱を開けたらそもそも数当てゲームにならないw
バカ過ぎw
159: 2020/02/11(火)14:12 ID:gdPWLy3I(9/11) AAS
だいたい、誰も開けてない箱の中身を当てるから驚きがあるんで
誰かがカンニングした後で情報もらって当てられるというなら
当たり前だな〜ということにしかならない。
しかも◆e.a0E5TtKE の主張したい「当てられない」ということとは
真逆の結果になるだけw
160: 2020/02/11(火)14:32 ID:gdPWLy3I(10/11) AAS
第3者が代表元を作る際、すべての箱を開ける必要はない。
しかし、第3者が開封済の箱を解答者が再び開けてはならないという法はない。
第3者が代表元100列を作ったあとで時枝解法を実行すると
解答者は第3者が開封済で代表元と一致させた番号の箱を
99/100の確率で選ぶことになるだけですね。
161: 2020/02/11(火)14:34 ID:gdPWLy3I(11/11) AAS
>第3者が開封済の箱を解答者が再び開けてはならないという法はない。
第3者が開封済の箱を解答者が開けずに当てる箱として残してはならないという法はない。
162(1): 2020/02/11(火)14:35 ID:pez17n4y(18/45) AAS
>>153
s^kのD+1番目以降の箱を開けてはじめてr^kを決められるが、r^kのD以前の項はどうやって決めるの?
当てずっぽうで決めたらs^kのD項目も当てずっぽうでしか数当てできないよ?
バカ?
163: 2020/02/11(火)14:37 ID:pez17n4y(19/45) AAS
>>162の状況を「不定な代表からは情報をもらえない」と表現してるんだが、バカには理解できないみたいだねw
164: 2020/02/11(火)14:44 ID:pez17n4y(20/45) AAS
ていうかこんな簡単なことさえ理解せずに「選択公理不要」と言い続けてる時点で、時枝戦略をまったく理解してないと白状してるのと同じことw
しかしサイコパスだからスレ閉鎖の約束も守らない
ほんとクズだね
165: 2020/02/11(火)14:50 ID:pez17n4y(21/45) AAS
バカは許す
しかし嘘・捏造・詐欺・約束違反の類は許さない
これら悪質行為は徹底的に叩く
166: 2020/02/11(火)15:14 ID:Ft3PUJtH(1/14) AAS
おっちゃんです。
>>54
>>40-41のCase2、Case3の議論は間違っている。
それらを軌道修正して、訂正すれば問題ないとは思う。
Case3の議論は、Case2のような議論に帰着される。
167: 2020/02/11(火)15:23 ID:pez17n4y(22/45) AAS
こんな初歩の初歩も分らんバカが反例だの証明のギャップだのとw
バカ過ぎw
168(1): 2020/02/11(火)15:27 ID:Ft3PUJtH(2/14) AAS
或る3以上の整数nが存在して、何れも或る3つの正整数 x、y、z が存在して、x^n+y^n=z^n が成り立つとする。
Euclid 平面 R^2 上の半径1の円周をCで表す。
仮定から、nは3以上の整数だから、仮定で成り立つとした等式 x^n+y^n=z^n から、
3つの正整数 x、y、z の大小関係について、0<x<z、0<y<z が両方共に成り立つ。
仮定から x、y、z は何れも有理整数だから、x、y、z∈Z。また、有理数体Qは有理整数環Zの商体だから、Z⊂Q。
よって、z>0 から、x/z、y/z∈Q。0<x<z だから、0<x/z<1。同様に、0<y<z だから、0<y/z<1。
平面 R^2 上で点 A(x/z,y/z) と原点 O(0,0) とを結ぶ線分と、x軸正方向とのなす角をθとする。
省10
169(1): 2020/02/11(火)15:30 ID:Ft3PUJtH(3/14) AAS
(>>168の続き)
Case2):平面 R^2 上の半径1の円周で囲まれた円の中に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の半径1の円周で囲まれた円の中に有理点 A(x/z,y/z) は存在して、(x/z)^2+(y/z)^2<1 を満たす。
3つの正整数x、y、zについて、0<x<z かつ 0<y<z なることと 0<x/z<1 かつ 0<y/z<1 こととは同値である。
また、確かに 0<x/z<1 かつ 0<y/z<1 である。よって、確かに平面 R^2 上の半径zの円周で囲まれた円の中に
有理点 B(x,y) は存在し、x^2+y^2<z^2 を満たす。0<x<z、0<y<z から、平面 R^2 上において、
3点 O(0,0)、A(x/z,y/z)、B(x,y) はその順に一直線上に並んでいるから、
省5
170: 2020/02/11(火)15:30 ID:yCL40qf3(12/44) AAS
>>145
>順序統計について、ベースの順序集合が、有限でないと、理論的扱いは難しい
確率分布関数、累積分布関数が考えられるなら
順序集合(分布の範囲)は無限でも問題ない
>例えば、自然数全体Nを考えると、ある有限のn∈Nで、
>自然数全体Nの前半分(前半)に来る確率は?
「半分」? 「n以下の確率」の意味?
省3
171(1): 2020/02/11(火)15:32 ID:yCL40qf3(13/44) AAS
>>146-147
>順序統計について、ベースの順序集合が、有限でないと、理論的扱いは難しい
確率分布関数、累積分布関数が考えられるなら
順序集合(分布の範囲)は無限でも問題ない
>例えば、自然数全体Nを考えると、ある有限のn∈Nで、
>自然数全体Nの前半分(前半)に来る確率は?
「半分」? 「n以下の確率」の意味?
省3
172(1): 2020/02/11(火)15:32 ID:Ft3PUJtH(4/14) AAS
(>>169の続き)
Case3):平面 R^2 上の半径1の円周で囲まれた円の外側に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の半径1の円周で囲まれた円の外側に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2>1 を満たす。
よって、x^2+y^2>z^2 を得る。故に、平面 R^2 上の半径zの円周で囲まれた円の外側に有理点 B(x,y) は存在する。
3つの正整数x、y、zについて、0<x<z かつ 0<y<z なることと 0<x/z<1 かつ 0<y/z<1 こととは同値である。
また、確かに 0<x<z かつ 0<y<z だから、x^2+y^2<4z^2。よって、x^2+y^2<(2z)^2 から ( x/(2z) )^2+( y/(2z) )^2<1 を得る。
zは正整数だから、2zは正整数である。よって、有理点 C(x/(2z),y/(2z)) は平面 R^2 上の半径1の円周で囲まれた円の中に存在する。
省10
173(1): 2020/02/11(火)15:34 ID:yCL40qf3(14/44) AAS
>>151
>普通の順序
>0<1<2・・・<n<n+1<・・・
>を入れると
>有限の数nは、自然数N全体の前半に来ます
前半、後半はどこで分かるんですか?
数学では、そういう言い方はしないですよ
174: 2020/02/11(火)15:38 ID:yCL40qf3(15/44) AAS
>>139
>>”2列とる場合
>>・決定番号の最大値がn+1以下の確率P[n+1]は
>> 決定番号の最大値がn以下の確率P[n]の10^2=100倍”
>細かい前提が不明です。2列だと決定番号はd1,d2とか二つ出ますよね
「決定番号の最大値」と書いてますから細かい前提まで明らかですね
d1、d2のうち大きい方が最大値
175: 2020/02/11(火)15:45 ID:yCL40qf3(16/44) AAS
離散確率分布あるいは離散的な関数で考える場合
積分・微分の代わりに和分・差分を使う必要がある
その場合、
最大値をとる変数が2つ以上になる確率が0より大きくなる場合があるので、
99個中の最大値より最後の値が大きくなる確率が1/100という
綺麗な結果にならない(1/100より小さくなる)
積分の値が1でない場合も有限であれば
省5
176: 2020/02/11(火)15:54 ID:yCL40qf3(17/44) AAS
「箱入り無数目」の場合、
決定番号別の確率を考えることはできない
確率の代わりに頻度(全体が∞)を考えるとしても
積分値を∞としないために、上限Dをもうけて積分を打ち切る必要がある
逆に言うと∞を無理矢理1、有限値を無理矢理0とすると
「任意のn個についてn個の確率変数の最大値よりも
あらたな1個の確率変数の値が上回る確率は1」
省2
177: 2020/02/11(火)16:01 ID:yCL40qf3(18/44) AAS
「箱入り無数目」で決定番号の分布を無理矢理考えると
「決定番号が自然数nをとる確率が0」
というようなおかしな結果がでる
上記がおかしな結果だというのは
決定番号が自然数の値をとることは
決定番号の定義から明らかだからである
つまりおかしな結果が出た理由は
省2
178(1): 2020/02/11(火)16:01 ID:pez17n4y(23/45) AAS
決定番号の分布なんて時枝戦略には一切不要ですけどね。
100列作れば100個の決定番号がある、それだけの条件で時枝戦略は成立しますから。
そしてその条件を保証するのが選択公理。
だから 選択公理 ⇒ 時枝定理
179(1): 2020/02/11(火)16:05 ID:yCL40qf3(19/44) AAS
>>178
>決定番号の分布なんて時枝戦略には一切不要ですけどね。
もちろん必要ありません
また、任意の実数列100列について成立する、
という主張ですから選択公理は必要です
180(1): 2020/02/11(火)16:10 ID:Ft3PUJtH(5/14) AAS
>>172の s>2 はもしかしたら間違いかも知れない。
図を描いて見ないと分からない。
Case3の議論はもっと長くなるかもしれない。
181: 2020/02/11(火)16:15 ID:Ft3PUJtH(6/14) AAS
多分、0<s<2 か。
182(1): 2020/02/11(火)16:28 ID:yCL40qf3(20/44) AAS
箱の中身が{0,…n-1}のn種類だとした場合
計算の仕方によっては、2列の決定番号の一致確率が(n-1)/nになる
nが∞に近づくにつれ、(n-1)/nは1に近づく
注)「計算の仕方によっては」に注意
つまり確率の値が計算の仕方に依存する、という意味
183(2): 2020/02/11(火)16:30 ID:pez17n4y(24/45) AAS
>>180
>間違いかも知れない
今後はチェック完了後に書き込むようにして下さい
184: 2020/02/11(火)16:35 ID:yCL40qf3(21/44) AAS
>>182
訂正 (n-1)/n→(n-1)/(n+1)
箱の中身が{0,…n-1}のn種類だとした場合
計算の仕方によっては、2列の決定番号の一致確率が(n-1)/(n+1)になる
nが∞に近づくにつれ、(n-1)/(n+1)は1に近づく
185(1): 2020/02/11(火)16:38 ID:yCL40qf3(22/44) AAS
>>183
チェックで癲癇の発作が起きても困るんで
本当は数学のような難しいことはやめたほうがいいと思う
186: 2020/02/11(火)16:39 ID:Ft3PUJtH(7/14) AAS
>>183
分かった。
187(1): 2020/02/11(火)16:47 ID:Ft3PUJtH(8/14) AAS
>>185
持病のことはそんなに気にしなくていい。
予測出来ない持病の症状の発症を気にしたら、却ってストレスが溜まる。
そういうのは、なるようにしかならない。
むしろ、歯の状態の方が気になる。
188: 2020/02/11(火)17:03 ID:pez17n4y(25/45) AAS
AA省
189: 2020/02/11(火)17:03 ID:pez17n4y(26/45) AAS
AA省
上下前次1-新書関写板覧索設栞歴
あと 813 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.028s