[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む80 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む80 http://rio2016.5ch.net/test/read.cgi/math/1578091012/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
207: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/01/10(金) 00:43:57.52 ID:KeHo+Wgs >>206 つづき ・Pruss氏のAnswerより(冒頭部分) The probabilistic reasoning depends on a conglomerability assumption, namely that given a fixed sequence u→ , the probability of guessing correctly is (n?1)/n, then for a randomly selected sequence, the probability of guessing correctly is (n?1)/n. But we have no reason to think the event of guessing correctly is measurable with respect to the probability measure induced by the random choice of sequence and index i, and we have no reason to think that the conglomerability assumption is appropriate. ・Our choice of index i is made randomly, but for this we only need the uniform distribution on {0,…,n}. It is made independently of the opponent's choice. ? Denis Dec 17 '13 at 15:21 ・What we have then is this: For each fixed opponent strategy, if i is chosen uniformly independently of that strategy (where the "independently" here isn't in the probabilistic sense), we win with probability at least (n?1)/n. That's right. But now the question is whether we can translate this to a statement without the conditional "For each fixed opponent strategy". ? Alexander Pruss Dec 19 '13 at 15:05 ・How about describing the riddle as this game, where we have to first explicit our strategy, then an opponent can choose any sequence. then it is obvious than our strategy cannot depend on the sequence. The riddle is "find how to win this game with proba (n-1)/n, for any n." ? Denis Dec 19 '13 at 19:43 ・But the opponent can win by foreseeing what which value of i we're going to choose and which choice of representatives we'll make. I suppose we would ban foresight of i? ? Alexander Pruss Dec 19 '13 at 21:25 (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1578091012/207
208: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/01/10(金) 00:44:19.04 ID:KeHo+Wgs >>207 つづき これで、ここでのPruss氏の発言は終わっている で、Denis Dec 17 '13 at 15:21 の”we only need the uniform distribution on {0,…,n}”を受けて Pruss氏 ”we win with probability at least (n?1)/n. That's right. But・・”でしょ つまり、Denis氏の”the uniform distribution on {0,…,n}”を仮定すれば、(n?1)/nだというのだが でも、それは、Pruss氏のAnswer(冒頭部分)にある通り、 ”The probabilistic reasoning depends on a conglomerability assumption”という文脈で語っているのであって (この冒頭部分での、”the probability of guessing correctly is (n?1)/n. But・・”と符合しているのだが) その後の、”But・・”の部分がPruss氏の主張ですよ(;p 以上 http://rio2016.5ch.net/test/read.cgi/math/1578091012/208
209: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/01/10(金) 00:47:00.88 ID:KeHo+Wgs >>207-208 文字化け訂正 (n?1)/n ↓ (n-1)/n. 分かると思うが(^^ まあ、リンク先の原英文見て貰えば良い (結構、マイナス記号”-”が、この板では?に化けるね(^^ ) http://rio2016.5ch.net/test/read.cgi/math/1578091012/209
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.043s