[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
725
(2): That's done 2020/03/27(金)15:45 ID:asHKGG7T(30/35) AAS
無限列xとその同値類の代表元r(x)を比較した場合
任意の自然数nについて「第n項が不一致」って事象は、
任意有限個では独立だけど、無限個で考えたら独立ではないね

なぜなら自然数の無限部分集合について、その要素となるn全部で
「第n項が不一致」となることはないから
(不一致となる項は有限個)
33
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/22(日)08:06 ID:jNutOcAm(1/6) AAS
>>24
>Ωが次の性質を持つ限りZFCと両立することはできません。
>・Fを
>x∈F⇔∃x1∋x2∋‥‥∋xn, x1=Ω, xn=x
>によって定められる集合とするときFの任意の要素はシングルトンか空集合。
>・Ωは有限Zermelo ordinal numberではない。

(前スレ>>961より)
省35
64
(2): 2019/12/25(水)12:17 ID:xYwdBxRF(2/3) AAS
>>63 補足

1.確かに、”公理的”に、自然数Nから、続いて順序数ωを定義していくときに、ノイマンの後者関数が一番すっきりしている
2.だが、後者関数の選び方には、他の流儀もあるという
3.順序数ωは、本質的に極限順序数であり、極限で定義することは、おかしなことはなにもない(>>63
4.いま問題になっていることは、このように、ノイマンの後者関数以外を使った場合に、極限でωを定義したときに、正則性公理に反するかどうかだ
5.それは「反しない」というのが私の主張ですよ

外部リンク:ja.wikipedia.org
省9
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.050s