[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
494(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/13(金)18:47 ID:4mEOwMQW(5/5) AAS
>>490 補足
(引用開始)
小学生レベルの落ちこぼれ おサルのために付言すれば
上記は、集合の包含関係があります
”ホウガン関係” 分かりますかぁ〜?ww (゜ロ゜;
(引用終り)
補足説明
省14
499: 2020/03/13(金)19:15 ID:i14ZcGJF(7/14) AAS
>>494
何が言いたいのかさっぱり分からない。
もしかして
>2)そうすると、数列の しっぽの部分のみ実数という同値類が考えられます
を正当化してるつもり?ぜんぜんできてないけど。
2)が大間違いなのでその先は読んでなかったが
>4)そうすると、明らかに、十六元数の数列を使うことは、おかしいと分かる
省3
519: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/14(土)07:06 ID:r2jRdi7g(1/7) AAS
>>494 タイポ訂正2つ
5)実数列rで、例えば r2を十六元数s2(s2 not∈ S)に変えた数列r’は、r’not∈R^Nですが、r’∈E(S)rです
↓
5)実数列rで、例えば r2を十六元数s2(s2 not∈ R)に変えた数列r’は、r’not∈R^Nですが、r’∈E(S)rです
同様の類似例は、任意のriで、十六元数si(si not∈ S)に変えた数列r’’で、r’’not∈R^Nですが、r’’∈E(S)rです
↓
同様の類似例は、任意のriで、十六元数si(si not∈ R)に変えた数列r’’で、r’’not∈R^Nですが、r’’∈E(S)rです
省1
521(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/14(土)08:33 ID:r2jRdi7g(3/7) AAS
>>494 補足
くどいが、包含関係 実数R ⊂ 十六元数S があり
実数列r:r1,r2,・・ri,ri+1・・ |r∈R^N
で
先頭のr1〜riを全て、十六元数列 s1〜si ( not∈ R)
に取り替えることができて
これを、r’’’:s1,s2,・・si,ri+1・・ |r∈S^N
省18
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.059s