[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
483
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)08:03 ID:nz3HyF4S(2/5) AAS
>>476 補足
(引用開始)
で、例えば 十六元数は、「その全体はしばしば S で表される」らしい(下記)
時枝にならい 十六元数の可算無限長の数列を作ります
時枝理論を適用して、十六元数列 S:S1,S2,・・Si,・・ で、数列のしっぽの同値類を、実数Rと同様に作り、代表からSiを確率1-εで的中できま〜す!
(時枝理論が正しければねぇ〜ww(^^; )
(引用終り)
省23
485: 2020/03/13(金)10:44 ID:i14ZcGJF(2/14) AAS
>>483
>1)可算長の十六元数列 S:S1,S2,・・Si,・・ で、数列のしっぽの同値類を、実数Rの列と同様に作ります
>2)そうすると、数列の しっぽの部分のみ実数という同値類が考えられます
同値関係を勝手に改変して何を論じた気になってるのですか?
まったく分かってませんね。時枝戦略を論じたいなら正しく理解することから始めましょう。
486: 2020/03/13(金)13:51 ID:i14ZcGJF(3/14) AAS
>>483
>1)可算長の十六元数列 S:S1,S2,・・Si,・・ で、数列のしっぽの同値類を、実数Rの列と同様に作ります
>2)そうすると、数列の しっぽの部分のみ実数という同値類が考えられます
ていうか、どういう同値関係を前提にしてるの?それ本当に同値関係になってるの?
もしかして馬鹿丸出し?
501
(1): 2020/03/13(金)19:30 ID:i14ZcGJF(8/14) AAS
>>483
(1)実数列というルールで出題者が s∈{0,1}^N を出題した
(2)実数列というルールで出題者が s∈R^N を出題した
(3)十六元数列というルールで出題者が s∈R^N を出題した
(4)十六元数列というルールで出題者が s∈十六元数全体の集合^N を出題した

どの場合も回答者は時枝戦略を使えば勝率1-εで勝てますが、それが何だと言いたいの?
514
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)21:34 ID:nz3HyF4S(5/5) AAS
>>511 補足

・ベルヌーイ列 {0,1}^Nを当てるのに、実数列R^Nの類別を作るとか、それって バカげているし
・例えば、ベルヌーイ列 {0,1}^Nを当てるのだったら、有理数列 Q^Nでもなんでも良いのですよね?
・ところが、時枝理論では、十六元数列S^N でも使えて、同じく確率1-εになるという
・なんで? どんどん ベルヌーイ列 {0,1}^Nから、アサッテの方に行って、同じく確率1-εだと??(゜ロ゜;
・それって、まさに、”If not, then guess π. (Yes, I realize that π not∈{0,1}.)
 Intuitively this seems a really dumb strategy. (by DR Pruss >>483) (^^;
省2
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s