[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
305
(3): 2020/02/22(土)12:18 ID:0iFmeQIA(2/13) AAS
Case2):平面 R^2 上の半径1の円周Cで囲まれた円の中に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の円周Cで囲まれた円の中に有理点 A(x/z,y/z) は存在して、(x/z)^2+(y/z)^2<1 を満たす。
また、仮定から n≧3 だから x/z<1、y/z<1 から、(x/z)^n+(y/z)^n<(x/z)^2+(y/z)^2。
よって、(x/z)^n+(y/z)^n<1 から x^n+y^n<z^n となって、成り立つと仮定した等式 x^n+y^n=z^n に反し矛盾する。
Case3):平面 R^2 上の半径1の円周Cで囲まれた円の外側に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の円周Cで囲まれた円の外側に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2>1 を満たす。
また、3つの正整数x、y、zについて、1≦x<z かつ 1≦y<z だから、x^2+y^2<2z^2 から (x/z)^2+(y/z)^2<2 を得る。
省11
306: 2020/02/22(土)12:30 ID:0iFmeQIA(3/13) AAS
>>305の Case3) の下の方の訂正:
仮定から n≧3 であり 0<θ<π だから、 → 仮定から n≧3 であり 0<θ<π/2 だから、
309: 2020/02/22(土)13:20 ID:0iFmeQIA(6/13) AAS
>>305の Case3) を訂正したが、どうやら間違っていた。
私が見た幻は幻なんでしょう、多分。
310
(2): 2020/02/22(土)15:44 ID:0iFmeQIA(7/13) AAS
>>305の Case3) は取り消して、その訂正版。

Case3):平面 R^2 上の半径1の円周Cで囲まれた円の外側に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の円周Cで囲まれた円の外側に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2>1 を満たす。
また、3つの正整数x、y、zについて、1≦x<z かつ 1≦y<z だから、x^2+y^2<2z^2 から (x/z)^2+(y/z)^2<2 を得る。
故に、或る 1<s<√2 なる実数sが存在して、(x/z)^2+(y/z)^2=s^2 であり、( x/(sz) )^2+( y/(sz) )^2=1 となる。
平面 R^2 上において、3点 O(0,0)、B(x/(sz),y/(sz))、A(x/z,y/z) はその順に一直線上に並んでいるから、
θの定義から cos(θ)=x/(sz) かつ sin(θ)=y/(sz) かつ sz=√(x^2+y^2) であり、s・cos(θ)=x/z、s・sin(θ)=y/z。
省9
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.039s