[過去ログ]
現代数学の系譜 カントル 超限集合論2 (1002レス)
現代数学の系譜 カントル 超限集合論2 http://rio2016.5ch.net/test/read.cgi/math/1576852086/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
772: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/29(日) 12:00:38.44 ID:PhmwLbdr >>771 さらに、補足説明する 1)まず、有限長の数列を考えよう 問題の数列 X:X1,X2,・・,Xd-1,Xd,Xd+1,・・Xh (hは有限整数) 同値類の代表列を rX:r1,r2,・・,rd-1,Xd,Xd+1,・・Xh とする 2)上記同様、箱にq面サイコロを作って、1〜qの整数を入れるとする qは十分大きく、q-1≒qとする 3)上記>>771の通り d=mとなる 代表列rXは、q^(m-1)個 と書ける 全体hまでの場合の数は、等比数列の和公式より Σm=1〜h {q^(m-1)} = (q^h -1)/(q-1)・・(1) dまでの場合の数も、同様 Σm=1〜d {q^(m-1)} = (q^d -1)/(q-1)・・(2) 4)そこで、有限長の数列→可算無限長の数列 で 極限 h→∞ を考える 決定番号が、数列の先頭部分で、有限d以下に収まる割合Lは 上記(1)(2)を使うと L={(q^d -1)/(q-1)}/{(q^h -1)/(q-1)} =(q^d -1)/(q^h -1) ここで、dはある有限の定数で、極限 h→∞ をとると lim h→∞ L =lim h→∞ (q^d -1)/(q^h -1) =0 つまり、Lは 指数関数的に0に近づく 5)このような分布を持つ 決定番号dの大小の確率は論じられない ∵ 1)可算無限長列では、決定番号dが有限の場合の割合は、0!! 2)決定番号dが有限の場合の割合が0の中で、d1,d2の大小を論じて確率計算をしても、無意味 QED ww(^^; (参考) https://www.kwansei.ac.jp/hs/z90010/sugakua/suuretu/touhisum/touhisum.htm 等比数列の和 - 関西学院大学 https://ja.wikipedia.org/wiki/%E7%AD%89%E6%AF%94%E6%95%B0%E5%88%97 等比数列 http://rio2016.5ch.net/test/read.cgi/math/1576852086/772
774: 132人目の素数さん [] 2020/03/29(日) 12:13:11.53 ID:YiV+QH7u >>772 >2)上記同様、箱にq面サイコロを作って、1〜qの整数を入れるとする > qは十分大きく、q-1≒qとする え?w 1≒2と言いたいの?w 頭大丈夫?w http://rio2016.5ch.net/test/read.cgi/math/1576852086/774
775: 132人目の素数さん [] 2020/03/29(日) 12:16:34.41 ID:ReTOy/u3 >>770 もともと頭は良くなかった >>771 ジムの人は箱の中身が{0,1}の要素の場合で考えてたが むしろ閉区間[0,1]の要素の場合で考えたほうがよかった そうすれば 「どの箱も代表元と一致しない確率が1なのに 無限個の箱がすべて代表元と一致しない確率は0」 という”無限族まるごと独立性”の否定に気づけた筈 >>772 >可算無限長列では、決定番号dが有限の場合の割合は、0!! 誤り 任意の自然数nについて 決定番号がn以下の確率は0だが そこから、決定番号が自然数となる確率が0、という結論は導けない >決定番号dが有限の場合の割合が0の中で、 >d1,d2の大小を論じて確率計算をしても、無意味 決定番号は必ず自然数となるから当然大小が比較できる 超準自然数でも全く同様 大小が比較できないというのは嘘 http://rio2016.5ch.net/test/read.cgi/math/1576852086/775
776: 132人目の素数さん [] 2020/03/29(日) 12:17:07.01 ID:YiV+QH7u >>772 > 1)可算無限長列では、決定番号dが有限の場合の割合は、0!! 定義により決定番号は自然数。どの自然数も有限。よって決定番号が有限の確率は1!! 妄想もほどほどに http://rio2016.5ch.net/test/read.cgi/math/1576852086/776
784: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/29(日) 15:17:54.50 ID:PhmwLbdr >>772 補足 時枝の話は、可算無限数列を、形式的冪級数(の係数)で しっぽが一致 ↓ 式の次数が高い係数がすべて一致 におきかえると 問題の数列=1つの形式的冪級数の 形式的冪級数環のしっぽの同値類 と考えることができて 分り易い 例えば下記 (なお、変数をyとします(Xはすでに使っているため)) 問題の数列 X:X1,X2,X3,・・,Xd,Xd+1・・ ↓ 形式的冪級数 FX=X1+X2y+X3y^2・・ xd-1 y^(d-2)+Xd y^(d-1)+Xd+1 y^d・・ 代表列 rX:r1,r2,・・,rd-1,Xd,Xd+1,・・ ↓ 形式的冪級数 FrX=r1+r2y+r3y^2・・rd-1 y^(d-2)+Xd y^(d-1)+Xd+1 y^d・・ と、対応して書き直せる ここで、2つの式の差 FX-FrX を考えると、係数がd番目Xdから後が一致しているので FX-FrX= ・・・+0y^(d-1)+0y^d・・ としっぽの係数 d以降がすべて0になる多項式になる そして、同値類は、形式的冪級数のしっぽによる 多項式環の話に直せる つまり、決定番号は、多項式環の1つの式(=同値類の元)の次数d-1に直せる*) (*)注:多項式環では、係数が0次の定数項から始まるので、次数との比較で1つ ずれる) この話は、過去にガロアスレにも書いたが、また 時間があるときに 書きます 形式的冪級数→多項式環→多項式の次数 という流れで考えると 時枝記事の(みせかけ)トリックが、よく分ります (参考) http://lupus.is.kochi-u.ac.jp/shiota/ 塩田研一 高知大学 理工学部 情報科学教室 http://lupus.is.kochi-u.ac.jp/shiota/misc/index.html 塩田研一覚書帳 http://lupus.is.kochi-u.ac.jp/shiota/misc/field/FieldTheory.html 体 ― 塩田研一覚書帳 ― p 進体 p 進付値(ふち) 有限次代数体の素イデアル p についても p 進距離を考えることができます。 また体 F 上の一変数関数体 F(x) においては、例えば x が素数の役割を果たして付値が定義でき、 その完備化は形式的べき級数体 F((x)) になります。 Qp の中で |x|p≦1 を満たす元 x を p 進整数と呼び、 p 進整数全ての集合を Zp と表します。 http://lupus.is.kochi-u.ac.jp/shiota/misc/field/FiniteField.html 有限体 ― 塩田研一覚書帳 ― http://rio2016.5ch.net/test/read.cgi/math/1576852086/784
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
5.751s*