[過去ログ]
現代数学の系譜 カントル 超限集合論2 (1002レス)
現代数学の系譜 カントル 超限集合論2 http://rio2016.5ch.net/test/read.cgi/math/1576852086/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
553: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/20(金) 11:34:24.47 ID:+qJdNaLm <転載> 0.99999……は1ではない その7 https://rio2016.5ch.net/test/read.cgi/math/1584625377/79-80 (抜粋) 79 2020/03/20(金) ID:WMaa4Quj conglomerabilityの定義を理解した上でPrussの論文を読み直せば、 自説がPrussによって真正面から否定されてると理解できます 80 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/20(金) ID:+qJdNaLm おサルさん、DR Pruss氏は、mathoverflowの彼の回答の前段で、conglomerabilityを出しているが (下記引用ご参照) 最後は、”the function is measurable”が不成立だから、”dumb(ダメダメ) strategy”と言っているよ (下記の通り) QED (^^; (参考) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13 DR Pruss氏 (抜粋) By a conglomerability assumption, we could then conclude that P(X<=Y)=0, which would be absurd as the same reasoning would also show that P(Y<=X)=0. In general, Mj will be nonmeasurable (one can prove this in at least some cases). We likewise have no reason to think that M is measurable. But without measurability, we can't make sense of talk of the probability that the guess will be correct. That's a fine argument assuming the function is measurable. But what if it's not? So there is an extension P′ of P such that P′-almost surely the dumb strategy works. Just let P′ be an extension on which the set of representatives has measure 1 and note that the dumb strategy works on the set of representatives. http://www.mdpi.com/2073-8994/3/3/636 Symmetry and the Brown-Freiling Refutation of the Continuum Hypothesis by Paul Bartha Symmetry 2011, 3(3), 636-652; http://rio2016.5ch.net/test/read.cgi/math/1576852086/553
554: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/20(金) 12:00:58.15 ID:+qJdNaLm >>553 DR Pruss氏は下記で、conglomerabilityの正確な意味がいまいち分からんけど 要するに”nonmeasurable”で、測度論的確率から外れているということでしょう (^^; https://en.wikipedia.org/wiki/Alexander_Pruss Alexander Robert Pruss (born January 5, 1973) is a Canadian mathematician, philosopher, Professor of Philosophy and the Co-Director of Graduate Studies in Philosophy at Baylor University in Waco, Texas. Pruss graduated from the University of Western Ontario in 1991 with a Bachelor of Science degree in Mathematics and Physics. After earning a Ph.D. in Mathematics at the University of British Columbia in 1996 and publishing several papers in Proceedings of the American Mathematical Society and other mathematical journals,[4] he began graduate work in philosophy at the University of Pittsburgh. https://books.google.co.jp/books?id=RXBoDwAAQBAJ&pg=PA77&dq=Pruss+conglomerability&hl=ja&sa=X&ved=0ahUKEwjplc_N8qfoAhWJ7WEKHXwVDuoQ6AEIKDAA#v=onepage&q=Pruss%20conglomerability&f=false Infinity, Causation, and Paradox 著者: Alexander R. Pruss (P76-77 に conglomerabilityの説明があるが、正確な定義は分からないが、 P76に”But typically, where there is no coutable additibity, there is lack of conglomerability(Scervish,Seidenfeld,and Kanade 1984).” と記されているので、”coutable additibity ”即ち σ-加法性 と密接に関連した(多分”σ-加法性”を拡張した)概念だと思う) (更に附言すれば、現代の測度論的確率が、σ-加法性をベースに成立っているとすれば、DR Pruss氏の指摘は、要するに”nonmeasurable”で、測度論的確率から外れているということでしょう (^^; ) http://rio2016.5ch.net/test/read.cgi/math/1576852086/554
558: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/21(土) 07:53:01.27 ID:gPebnXHG >>557 おサルに分かるようには書けないなw 理解力の無いおサルには、正確に書いてもしかたないだろ?w(^^; mathoverflow(>>553)における 質問者 Denis氏に対する DR Pruss氏の回答が如し つまり、DR Pruss氏は正確に回答しているが、質問者 Denis氏は ”the function is measurable”が理解できないみたい ” measurable”が分かってないんだな、質問者 Denis氏は 彼が、” measurable”に対する理解を示す発言皆無なんだよw おサルは、それと同じだよw(゜ロ゜; http://rio2016.5ch.net/test/read.cgi/math/1576852086/558
573: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/21(土) 20:28:59.97 ID:gPebnXHG >>568 おサルさー、おまえ mathoverflowの DR Pruss氏議論が分かっていない 質問者 Denis氏そっくりの理解じゃんかw(゜ロ゜; DR Pruss氏は、”That's a fine argument assuming the function is measurable. But what if it's not?”ってあるよね で、質問者 Denis氏は、この議論には、全く入れなかった ただ、壊れたレコードのように ”Our choice of index i is made randomly, but for this we only need the uniform distribution on {0,…,n}. It is made independently of the opponent's choice. ? Denis Dec 17 '13 at 15:21” を繰返したのだった(^^; (>>553より参考) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13 DR Pruss氏 (抜粋) By a conglomerability assumption, we could then conclude that P(X<=Y)=0, which would be absurd as the same reasoning would also show that P(Y<=X)=0. In general, Mj will be nonmeasurable (one can prove this in at least some cases). We likewise have no reason to think that M is measurable. But without measurability, we can't make sense of talk of the probability that the guess will be correct. That's a fine argument assuming the function is measurable. But what if it's not? So there is an extension P′ of P such that P′-almost surely the dumb strategy works. Just let P′ be an extension on which the set of representatives has measure 1 and note that the dumb strategy works on the set of representatives. http://www.mdpi.com/2073-8994/3/3/636 Symmetry and the Brown-Freiling Refutation of the Continuum Hypothesis by Paul Bartha Symmetry 2011, 3(3), 636-652; http://rio2016.5ch.net/test/read.cgi/math/1576852086/573
586: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/22(日) 09:53:17.78 ID:TMbOZsnt >>582 おサル、それ誤読だよ ”misunderstanding”は、下記引用の3)のとこでしょ でも、面白いね、文献の”philosophical reason”の「 independently」の ”orthodox (Kolmogorovian) probability theory”と異なる見方(哲学だけれど) (>>553より参考) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13 DR Pruss氏 (抜粋) show 6 more comments 1)Our choice of index i is made randomly, but for this we only need the uniform distribution on {0,…,n}. It is made independently of the opponent's choice. ? Denis Dec 17 '13 at 15:21 2)I was assuming that "independently" has the meaning it does in probability theory (P(AB)=P(A)P(B) and generalizations for σ-fields). But that does require a probabilistic description of the opponent's choice. Of course, one could mean "independently" here in some non-mathematical causal sense. (And there may be philosophical reason for doing this: fitelson.org/doi.pdf ) Still, mixing the probabilistic with nonprobabilistic concepts might lead to some difficulties, though. ? Alexander Pruss Dec 18 '13 at 15:21 3)ah ok I see where the misunderstanding comes from, it's true that "independently" is ambiguous, because only one random variable is involved here. But I think it still has a mathematical meaning in the sense "it does not depend on the opponent's choice", namely we have ∃x∀y where x is our strategy and y is our opponent's strategy (i.e. the sequence), and we still win this game because we can choose devise a (probabilistic) strategy that works on all sequences. ? Denis Dec 19 '13 at 11:54 つづく http://rio2016.5ch.net/test/read.cgi/math/1576852086/586
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.045s