[過去ログ]
現代数学の系譜 カントル 超限集合論2 (1002レス)
現代数学の系譜 カントル 超限集合論2 http://rio2016.5ch.net/test/read.cgi/math/1576852086/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
33: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 08:06:52.76 ID:jNutOcAm >>24 >Ωが次の性質を持つ限りZFCと両立することはできません。 >・Fを >x∈F⇔∃x1∋x2∋‥‥∋xn, x1=Ω, xn=x >によって定められる集合とするときFの任意の要素はシングルトンか空集合。 >・Ωは有限Zermelo ordinal numberではない。 (前スレ>>961より) https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0 自然数 (抜粋) <ノイマン構成> ・任意の集合 a の後者は a と {a} の合併集合として定義される。 suc (a):=a∪{a} このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。 <Zermelo構成>(前スレ>>725より) 他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。 例えば、0 := {}, suc(a) := {a} と定義したならば、 0 := {} 1 := {0} = {{}} 2 := {1} = {{{}}} 3 := {2} = {{{{}}}} (引用終り) なので、<Zermelo構成>も<ノイマン構成>も ∈-数列 0∈1∈2∈3・・・∈n∈・・・→ω ("→ω"の意味は、ωに向けてずっと続くってことね) (なお、ωは、超限順序数で、いわゆる”有限”ではない) で、「0∈1∈2∈3・・・∈n∈・・・→ω」は、<Zermelo構成>も<ノイマン構成>も全く同じ だから、この<Zermelo構成>を否定することはできません (∵<Zermelo構成>を否定すると、<ノイマン構成>も同様に否定されるから) 但し、 <ノイマン構成>においては、ω=N(自然数の集合)なので n∈ω(=N)は、可 というか <ノイマン構成>なら、任意のm<nで、m∈n成立 (∵<ノイマン構成>では、後者関数の定義が、それ以前の全てを要素からなる集合だから(前スレ966)) 一方、<Zermelo構成>においては、もともと、任意のm<nで、m∈n不成立 (∵<Zermelo構成>では、後者関数の定義が、異なるため) だから、もともと、”n not∈ω(=x1=Ωかな)”なのです(nは、任意の自然数) これは、後者関数の定義の問題なのです (なので、<Zermelo構成>もZFC内で成立します) つづく http://rio2016.5ch.net/test/read.cgi/math/1576852086/33
34: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 08:07:12.73 ID:jNutOcAm >>33 つづき あとは、<ノイマン構成>と異なり、<Zermelo構成>で「ω=N(自然数の集合)」以外のωの定義が可能かってことね <Zermelo構成>では、「0∈1∈2∈3・・・∈n∈・・・→ω」の極限として、ωを定義すれば良い この論法は、<Zermelo構成>以外の後者関数でも使えるよ 以上 http://rio2016.5ch.net/test/read.cgi/math/1576852086/34
35: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 08:13:24.46 ID:jNutOcAm >>34 補足 これは、下記の極限順序数の定義 「順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)」 と同じかな(^^ https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0 極限順序数 (抜粋) 特徴付け 極限順序数は他にもいろいろなやり方で定義できる: ・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1576852086/35
36: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 08:18:27.97 ID:jNutOcAm >>33 訂正 (∵<ノイマン構成>では、後者関数の定義が、それ以前の全てを要素からなる集合だから(前スレ966)) ↓ (∵<ノイマン構成>では、後者関数の定義が、それ以前の全ての要素からなる集合だから(前スレ966)) かな コピペでウェブサイトから文の一部を切り取ってくると、繋がりがおかしくなっていた(^^; http://rio2016.5ch.net/test/read.cgi/math/1576852086/36
37: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 08:22:58.77 ID:jNutOcAm >>35 補足 >極限順序数 >極限順序数は他にもいろいろなやり方で定義できる: >・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。 順序位相(英語版)に関する極限点だから、極限順序数と呼ぶのかな?(^^ http://rio2016.5ch.net/test/read.cgi/math/1576852086/37
47: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 20:19:33.66 ID:jNutOcAm >>40 何を訳の分からんことを 言っているのかね? ノイマン構成によるωだって 結局は、極限なんだよ いかなる前者の存在もありえず、よってωは後者関数による生成ではない その極限の存在を認めるのが、無限公理ですよ Zermelo構成に同じ 結局は、極限なんだよ Zermelo構成による後者関数の極限 lim n→∞ suc(n) が存在する それを、可算多重シングルトンωと名付ける(数学的には定義するだな) あのさ Zermelo構成対する批判は ノイマン構成についても当てはまるんだぜ よく覚えておけよw(^^ (>>35より再録) https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0 極限順序数 (抜粋) 特徴付け 極限順序数は他にもいろいろなやり方で定義できる: ・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1576852086/47
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.026s