[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
304: 2020/02/22(土)12:16 ID:0iFmeQIA(1/13) AAS
或る3以上の整数nが存在して、何れも或る3つの正整数 x、y、z が存在して、x^n+y^n=z^n が成り立つとする。
Euclid 平面 R^2 上の半径1の円周をCで表す。
仮定から、nは3以上の整数だから、仮定した等式 x^n+y^n=z^n から、
3つの正整数 x、y、z の大小関係について、0<x<z、0<y<z が両方共に成り立つ。
仮定から x、y、z は何れも有理整数だから、x、y、z∈Z。また、有理数体Qは有理整数環Zの商体だから、Z⊂Q。
よって、z>0 から、x/z、y/z∈Q。0<x<z だから、0<x/z<1。同様に、0<y<z だから、0<y/z<1。
平面 R^2 上で点 A(x/z,y/z) と原点 O(0,0) とを結ぶ線分と、x軸正方向とのなす角をθとする。
省10
305
(3): 2020/02/22(土)12:18 ID:0iFmeQIA(2/13) AAS
Case2):平面 R^2 上の半径1の円周Cで囲まれた円の中に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の円周Cで囲まれた円の中に有理点 A(x/z,y/z) は存在して、(x/z)^2+(y/z)^2<1 を満たす。
また、仮定から n≧3 だから x/z<1、y/z<1 から、(x/z)^n+(y/z)^n<(x/z)^2+(y/z)^2。
よって、(x/z)^n+(y/z)^n<1 から x^n+y^n<z^n となって、成り立つと仮定した等式 x^n+y^n=z^n に反し矛盾する。
Case3):平面 R^2 上の半径1の円周Cで囲まれた円の外側に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の円周Cで囲まれた円の外側に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2>1 を満たす。
また、3つの正整数x、y、zについて、1≦x<z かつ 1≦y<z だから、x^2+y^2<2z^2 から (x/z)^2+(y/z)^2<2 を得る。
省11
306: 2020/02/22(土)12:30 ID:0iFmeQIA(3/13) AAS
>>305の Case3) の下の方の訂正:
仮定から n≧3 であり 0<θ<π だから、 → 仮定から n≧3 であり 0<θ<π/2 だから、
307: 2020/02/22(土)12:49 ID:0iFmeQIA(4/13) AAS
第84スレは強制的に立てられなくなったようだな。
308: 2020/02/22(土)12:54 ID:0iFmeQIA(5/13) AAS
おっちゃんです。
やっと完成させた。
Case3) が怪しいが、どうやら、私が最初に見たことは幻ではなかったようだ。
309: 2020/02/22(土)13:20 ID:0iFmeQIA(6/13) AAS
>>305の Case3) を訂正したが、どうやら間違っていた。
私が見た幻は幻なんでしょう、多分。
310
(2): 2020/02/22(土)15:44 ID:0iFmeQIA(7/13) AAS
>>305の Case3) は取り消して、その訂正版。

Case3):平面 R^2 上の半径1の円周Cで囲まれた円の外側に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の円周Cで囲まれた円の外側に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2>1 を満たす。
また、3つの正整数x、y、zについて、1≦x<z かつ 1≦y<z だから、x^2+y^2<2z^2 から (x/z)^2+(y/z)^2<2 を得る。
故に、或る 1<s<√2 なる実数sが存在して、(x/z)^2+(y/z)^2=s^2 であり、( x/(sz) )^2+( y/(sz) )^2=1 となる。
平面 R^2 上において、3点 O(0,0)、B(x/(sz),y/(sz))、A(x/z,y/z) はその順に一直線上に並んでいるから、
θの定義から cos(θ)=x/(sz) かつ sin(θ)=y/(sz) かつ sz=√(x^2+y^2) であり、s・cos(θ)=x/z、s・sin(θ)=y/z。
省9
311
(1): 2020/02/22(土)16:10 ID:0iFmeQIA(8/13) AAS
>>310の訂正:
>また、mに対して3つの正の実数 r、s'、t が対応して r^m+(s')^m=t^m となるような2以上の整数mが存在するならば、mは一意に決まる。
>よって、mに対して3つの正の実数 r、s'、t が対応して (r/t)^m+(s'/t)^m=1 となるような2以上の整数mが存在するならば、mは一意に m=2 に決まる。
この2行は
>また、何れも或る3つの正の実数 r、s'、t が存在して r^m+(s')^m=t^m となるような2以上の整数mが存在するならば、mは一意に決まる。
>よって、何れも或る3つの正の実数 r、s'、t が存在して (r/t)^m+(s'/t)^m=1 となるような2以上の整数mが存在するならば、mは一意に m=2 に決まる。
に訂正。
313: 2020/02/22(土)17:00 ID:0iFmeQIA(9/13) AAS
>>310-311は一般的な証明に使えるような論法になっているから、多分間違いでしょう。
間違いと意識して>>310-311を書いたつもりはないが、>>310-311にはどこかに間違いがある筈。
それにしても、証明の Case3) ではスムーズに矛盾を導けない。
314
(1): 2020/02/22(土)17:03 ID:0iFmeQIA(10/13) AAS
>>312
いや、スレを立てる程のことではないんで。
316
(1): 2020/02/22(土)17:08 ID:0iFmeQIA(11/13) AAS
それじゃ、おっちゃんもう寝る。
318
(1): 2020/02/22(土)17:13 ID:0iFmeQIA(12/13) AAS
>>315
スレを立ててもいいけど、毎日書くことはないんで、スレを立てたら他の人が埋めて行くようなことになると思う。
319: 2020/02/22(土)17:14 ID:0iFmeQIA(13/13) AAS
それじゃ、おっちゃんもう寝る。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s