[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
81
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/27(金)08:26 ID:DGQc6wD0(1/3) AAS
メモ
外部リンク:ja.wikipedia.org
ゲーデルの構成可能集合
クルト・ゲーデルによって導入された、集合論の公理を満たすモデル上で空集合から帰納的に構成していける集合のことである。より正確な定義は後に述べる。
性質
・L は全ての順序数を含む最小の ZFC のモデルである。

外部リンク:ja.wikipedia.org
極限順序数
順序数に関するフォンノイマンの定義(英語版)を用いれば、任意の順序数はそれより小さい順序数全体の成す整列集合として与えられる。順序数からなる空でない集合の合併は最大元を持たないから、常に極限順序数である。フォンノイマン基数割り当て(英語版)を用いれば、任意の無限基数もまた極限順序数となる。

外部リンク:en.wikipedia.org
Von Neumann definition of ordinals

外部リンク:ja.wikipedia.org
フォン・ノイマン宇宙 Vとは、遺伝的整礎集合全体のクラスである。
数学の集合論とその周辺分野において、フォン・ノイマン宇宙 Vとは、遺伝的整礎集合全体のクラスである。この集まりは、ZFCによって定義され、ZFCの公理に解釈や動機を与えるためにしばしば用いられる。
整礎集合の階数(rank)はその集合の全ての要素の階数より大きい最小の順序数として帰納的に定義される。 [1] 特に、空集合の階数は0で、順序数はそれ自身と等しい階数をもつ。Vの集合はその階数に基づいて超限個の階層に分けられ、その階層は累積的階層と呼ばれる。
1-
あと 921 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.010s