[過去ログ]
現代数学の系譜 カントル 超限集合論2 (1002レス)
現代数学の系譜 カントル 超限集合論2 http://rio2016.5ch.net/test/read.cgi/math/1576852086/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
772: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/29(日) 12:00:38.44 ID:PhmwLbdr >>771 さらに、補足説明する 1)まず、有限長の数列を考えよう 問題の数列 X:X1,X2,・・,Xd-1,Xd,Xd+1,・・Xh (hは有限整数) 同値類の代表列を rX:r1,r2,・・,rd-1,Xd,Xd+1,・・Xh とする 2)上記同様、箱にq面サイコロを作って、1〜qの整数を入れるとする qは十分大きく、q-1≒qとする 3)上記>>771の通り d=mとなる 代表列rXは、q^(m-1)個 と書ける 全体hまでの場合の数は、等比数列の和公式より Σm=1〜h {q^(m-1)} = (q^h -1)/(q-1)・・(1) dまでの場合の数も、同様 Σm=1〜d {q^(m-1)} = (q^d -1)/(q-1)・・(2) 4)そこで、有限長の数列→可算無限長の数列 で 極限 h→∞ を考える 決定番号が、数列の先頭部分で、有限d以下に収まる割合Lは 上記(1)(2)を使うと L={(q^d -1)/(q-1)}/{(q^h -1)/(q-1)} =(q^d -1)/(q^h -1) ここで、dはある有限の定数で、極限 h→∞ をとると lim h→∞ L =lim h→∞ (q^d -1)/(q^h -1) =0 つまり、Lは 指数関数的に0に近づく 5)このような分布を持つ 決定番号dの大小の確率は論じられない ∵ 1)可算無限長列では、決定番号dが有限の場合の割合は、0!! 2)決定番号dが有限の場合の割合が0の中で、d1,d2の大小を論じて確率計算をしても、無意味 QED ww(^^; (参考) https://www.kwansei.ac.jp/hs/z90010/sugakua/suuretu/touhisum/touhisum.htm 等比数列の和 - 関西学院大学 https://ja.wikipedia.org/wiki/%E7%AD%89%E6%AF%94%E6%95%B0%E5%88%97 等比数列 http://rio2016.5ch.net/test/read.cgi/math/1576852086/772
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 230 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.010s