[過去ログ]
現代数学の系譜 カントル 超限集合論2 (1002レス)
現代数学の系譜 カントル 超限集合論2 http://rio2016.5ch.net/test/read.cgi/math/1576852086/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
749: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/28(土) 12:43:45.86 ID:MRwZqC/h (>>593より) <時枝理論の複数列の比較による確率計算を潰す試みw(゜ロ゜; > により、時枝の複数列の比較は、数学的には本質ではない ことは、すでに示した さて、時枝の手法は、ある方法で、大きな数d'を与えて 問題の数列の決定番号dに対し d<d' とできれば 列Xにおいて、Xd'+1から先のしっぽの箱を開けて 列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中できるというもの これが成立たないことも、すでに>>593に説明した さらに、ここを掘り下げてみよう! 1.ある方法で、d'が与えられたとする 2.問題の数列 X:X1,X2,・・Xd',Xd'+1,・・ において しっぽの箱 Xd'+1,・・ たちを開けて、列Xの同値類を決める 3.そして 同値類の代表列 rXが分かる 4.このとき、2つの場合がおきる 1)開けた Xd'+1,・・ たちとの比較で、d'<dとなってしまっている場合(開けたところまでで、すでに代表列rXの箱の数と不一致がある場合) (実は、こうなる確率が1なのだが*) )この場合、"rXd=Xd"は無意味だ ∵ Xdは、すでに開封された箱だから "rXd=Xd"は無意味 2)もし、d<=d'+1となっている場合(開けたd'+1までの箱の全部が一致の場合) しかしこの場合でも、d=d'+1の可能性が大なのだ ∵ d'の箱の比較で、"rXd'≠Xd'"の可能性大。つまり、任意の2つの実数を比較して、"rXd'=Xd'"なる確率は0にすぎない 5.結局、時枝の数当て 不成立です!! QED (^^; 注*)(上記の「実は、こうなる確率が1」の説明) 1.dが自然数N全体を渡るとき、有限d'で分けて、n<=d'なるnは有限だが、d'<n なるnは無限 2.従って、自然数N全体からnをランダムに選ぶと、確率 P(n<=d')=0 (もっとも、これは正統な確率計算ではない ∵ 自然数Nの一様分布は、正則分布ではないから) 3.なお、時枝記事では、実は、我々は決定番号dを選ぶことができず、ただ代表列rXを選ぶしことしかできない にも関わらず、決定番号dを選ぶことができるが如く錯覚させていることも、時枝トリックの1つだ (これ実は、けっこう重要なのだ) http://rio2016.5ch.net/test/read.cgi/math/1576852086/749
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 253 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.010s