[過去ログ]
現代数学の系譜 カントル 超限集合論2 (1002レス)
現代数学の系譜 カントル 超限集合論2 http://rio2016.5ch.net/test/read.cgi/math/1576852086/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
661: 現代数学の系譜 雑談 ◆e.a0E5TtKE [sage] 2020/03/26(木) 15:22:07.07 ID:Toc1jVc8 >>657 補足 あと 1)決定番号dの範囲が無限大になるとき、dは非正則分布になる(下記ご参照) この場合、確率的な取り扱いができない (dを確率変数として考えた時、dの範囲が無限大なら、dは裾が減衰しないと、積分が発散して∞になる。そのとき、全事象Ω=1にすると、各事象は0とならざるを得ない。つまり、確率の公理を満たせない) 2)決定番号dをランダムに選ぶとか、あるいは(非可算無限集合たる同値類の中から)代表をランダムに選ぶことを考えるときには 下記の確率のベルトランのパラドックスのように、”無作為な選択の方法”を定義しなければ、確率計算ができない! だが、時枝は定義がない。そもそも「(非可算無限集合たる同値類の中から)代表を無作為に選ぶ」が、定義できるのかどうか??? 3)上記の1)と2)とを合わせて、確率計算で誤魔化しをしているのが、時枝記事です QED (参考) https://to-kei.net/bayes/improper_prior/ to-kei.net 非正則事前分布とは??完全なる無情報事前分布? 2017/10/06 (抜粋) Contents [hide] 1 非正則な分布とは?一様分布との比較 2 非正則分布は確率分布ではない!? 3 非正則事前分布は完全なる無情報事前分布 4 まとめ https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%88%E3%83%A9%E3%83%B3%E3%81%AE%E9%80%86%E8%AA%AC (抜粋) ベルトランの逆説(ベルトランのぎゃくせつ、英: Bertrand paradox)は、確率論の古典的解釈において発生する問題である。 確率変数を導入する方法やメカニズムが明確に定義されない場合、確率がうまく定義できない場合があることを示す例として与えた。 古典的な解答 この問題に対する古典的な解答は、以上のように、「無作為に」弦を選ぶ方法に依存する。 すなわち、無作為な選択の方法が確定すれば、そしてそのときのみ、この問題はwell-definedな解をもつ。 選択の方法は唯一ではないので、唯一の解は存在しえない。 http://rio2016.5ch.net/test/read.cgi/math/1576852086/661
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 341 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.014s