[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
362
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/02/29(土)12:46 ID:MeLF+0EN(4/5) AAS
現代数学の系譜 工学物理雑談 古典ガロア理論も読む80
2chスレ:math
(抜粋)
数学セミナー201511月号P37 時枝記事より
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
いったい無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
二つの方針が可能である.
確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
(引用終り)

これ、時枝さんの間違い
コンパクト性定理から、「任意の有限部分族がxx」という命題は、(1)も(2)も同義になる
つまり、レーヴェンハイム?スコーレムの定理から、「いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならない」

(参考)
外部リンク:ja.wikipedia.org
独立 (確率論)
(抜粋)
定義
事象の独立
一般に、(有限とは限らない)事象の族 Aλ が独立であるとは、その任意の有限部分族 A_λ1,A_λ2,・・・,A_λn
確率変数の独立
(共通の確率空間上の実)確率変数の族 { Xλ | λ ∈ Λ} が独立であるとは、任意の実数 aλ に対して
つまり、任意の実数 aλ と添字集合 Λ の任意の有限部分族 {λ1, …, λn} に対して

外部リンク:ja.wikipedia.org
コンパクト性定理
(抜粋)
一階述語論理の文の集合がモデルを持つこと(充足可能であること)と、その集合の任意の有限部分集合がモデルを持つことが同値であるという定理である。つまりある理論の充足可能性を示すにはその有限部分についてのみ調べれば良いという非常に有用性の高い定理であり、モデル理論における最も基本的かつ重要な成果のひとつである。

応用例
コンパクト性定理はモデル理論を含む様々な分野において多くの応用を持つ。例として、以下の定理や命題がコンパクト性定理を用いて証明される。
・上方レーヴェンハイム-スコーレムの定理
・実数や自然数の超準モデルの存在
・国の数が無限である場合の四色定理[3]

つづく
1-
あと 640 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.010s