[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
171
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/24(木)07:56 ID:G70Rid0Q(4/5) AAS
>>170
つづき

対応の明示的な記述
有限拡大に対し、対応は次のように明示的に述べることができる。
・Gal(E/F) の任意の部分群 H に対し、対応する体は普通 E^H と書かれ、これは全ての H の自己同型により固定される E の元の集合である。
・E/F の任意の中間体 K に対し、対応する部分群は、単に Aut(E/K) であり、これは全ての K の元を固定する Gal(E/F) に属する自己同型の集合である。
例えば、一番上の体 E は Gal(E/F) の自明な部分群に対応し、基礎体 F は Gal(E/F) の全体に対応する。
省14
172: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/24(木)07:56 ID:G70Rid0Q(5/5) AAS
>>171
つづき

例えば、L の正規部分拡大のうちで K の特定の元のべき根によって生成されるもの M の対称性を表す群
Gal (M/K)= Gal (L/K)/ Gal (L/M)
は巡回群になる。

L が K のべき根拡大になっているかどうかは群 Gal(L/K) が可解群になっているかどうか。
このようにして分解体の自己同型を調べることで方程式の可解性について考察することができる。
省16
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.076s