[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
16
(3): 2019/10/19(土)12:10 ID:S/ONPb/G(1/2) AAS
前スレの話の続き。
ζを1の原始5乗根とする。
Q上(Q(ζ)上としてもほぼ同じ)の可解5次方程式f(x)=0 は2項5次方程式に帰着するか?
位数20の場合を考える。
方程式の分解体をLとするとGal(L/Q)=F_20.
このとき Gal(M/Q)=C_4 なる中間体Mがある。C_4 同型 F_20/C_5.
f(x)の分解体が2項5次方程式の分解体と一致⇔M=Q(ζ).
省8
23
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/19(土)20:26 ID:ti2BclkQ(6/18) AAS
>>16-17
ID:S/ONPb/Gさん、どうも。スレ主です。

>Q上(Q(ζ)上としてもほぼ同じ)の可解5次方程式f(x)=0 は2項5次方程式に帰着するか?

ここ、下記 松田 修 のべき根拡大 定理 61 があるのです
つまり、体 K が 1 の原始 n 乗根 ζが添加されているとして、
べき根拡大 ←→ 巡回群
が成立つ
省38
41
(1): 2019/10/20(日)07:08 ID:1gpHuTQE(3/8) AAS
>>16
可解5次方程式の古い論文見てたら、解の5乗根の中に√17や√65=√5×√13
が現れてる例が載ってたから、やはり予想通り中間体として
1の13乗根や17乗根の部分体を含むケースがあるのだろう。
なので、2項方程式に帰着する?という話は明確に否定される。
324
(4): 2019/10/30(水)20:13 ID:fouiZRdR(1/2) AAS
>>317
>なんでPSL(2,16)が対称群S_17の部分群として現れるか分かる?
>16+1=17なんだけど、+1の意味分かる?

射影直線の位数
2次射影線形群は、1次元射影空間(=射影直線)に作用する

16元からなる有限体 F16 上の射影直線は 16 + 1 点からなる。
+1の分は無限遠点
省3
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s