[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 http://rio2016.5ch.net/test/read.cgi/math/1571400076/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
498: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/04(月) 20:36:33.27 ID:Qu1TcOyQ >>494 追加 https://www.sciencedirect.com/science/article/pii/S0021869314005183 Journal of Algebra Volume 422, 15 January 2015, Pages 187-222 Parametric Galois extensions Author links open overlay panelFrancoisLegrand https://reader.elsevier.com/reader/sd/pii/S0021869314005183?token=4C069AE76EFFCFC1E18B0BFD69A31AF06C2CC66DB402642D923675313C2A41FBF9CF61E485C1544038585012634EFB5B https://www.researchgate.net/publication/320835842_The_Inverse_Galois_Problem_4th_year_project The Inverse Galois Problem (4th year project). Article (PDF Available) ・ May 2017 Dean Yates Queen Mary, University of London Abstract For a given finite group G, the 'Inverse Galois Problem' consists of determining whether G occurs as a Galois group over a base field K, or in other words, determining the existence of a Galois extension L of the base field K such that G is isomorphic to the group of automorphisms on L (under the group operation of composition) that fix the elements of K. Having established the existence of such a field extension, with a specified group G as its Galois group, one then seeks to construct an explicit family of polynomials over K having G as its Galois group. We focus in particular on the classical problem, where our base field K is the field of rational numbers, and explore the classical problem for a variety of finite groups. つづく http://rio2016.5ch.net/test/read.cgi/math/1571400076/498
499: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/04(月) 20:38:05.98 ID:Qu1TcOyQ >>498 つづき Download full-text PDF https://www.researchgate.net/profile/Dean_Yates/publication/320835842_The_Inverse_Galois_Problem_4th_year_project/links/59fc9ddf458515d070654852/The-Inverse-Galois-Problem-4th-year-project.pdf (抜粋) 6. Table of finite groups realisable over Q We will now bring together results from the preceding sections to form a table of finite groups G that can be realised as Galois groups of rational polynomials and their corresponding generic polynomials: [16] G G-polynomial over Q generic polynomial for G V4 (t^4 + 1) (t^2 - x)(t^2 - y) Cn Φn(t) exist iff. 8 - n Sn -15f1 + 10f2 + 6f3 (c.f. theorem 3.3) t^n + an-1t^n-1 + + a1t + a0 S4 t^4 + 16t^3 - 4t^2 + 3t - 11 t^4 + xt^2 + yt + y An p(x; t) (c.f. theorem 4.5) unknown A3 t^3 - 3t + 1 t^3 - xt^2 + (x - 3)t + 1 A4 t^4 - 2t^3 + 2t^2 + 2 F((x; y); t) (see below) Dn unknown in general exist iff. 4 - n D8 t^4 - 2 t^4 - 4xt^2 + y D10 t^5 - 5t^2 - 3 t^5 + (y - 3)t^4 + (x - y + 3)t^3+(y2 - y - 2x - 1)t^2 + xt + y (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1571400076/499
504: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/04(月) 20:54:59.90 ID:Qu1TcOyQ >>498 追加 ”Shafarevich's theorem on solvable Galois groups” https://en.wikipedia.org/wiki/Shafarevich%27s_theorem_on_solvable_Galois_groups Shafarevich's theorem on solvable Galois groups In mathematics, Shafarevich's theorem states that any finite solvable group is the Galois group of some finite extension of the rational numbers. It was first proved by Igor Shafarevich (1954), though Schmidt[who?] later pointed out a gap in the proof, which was fixed by Shafarevich (1989). https://arxiv.org/abs/math/9809211 Safarevic's theorem on solvable groups as Galois groups Alexander Schmidt, Kay Wingberg (Submitted on 17 Sep 1998) https://arxiv.org/pdf/math/9809211.pdf The aim of this article is to give a complete proof of the following famous theorem of I. R. Safarevic: Theorem 1 Let k be a global field and let G be a finite solvable group. Then there exists a finite Galois extension K|k with Galois group G(K|k) 〜= G. http://rio2016.5ch.net/test/read.cgi/math/1571400076/504
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.051s