[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 http://rio2016.5ch.net/test/read.cgi/math/1571400076/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
335: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/01(金) 07:57:00.74 ID:rcKeDs9u >>334 追加 https://fr.wikipedia.org/wiki/Corps_fini Corps fini (抜粋) 4 Histoire 4.1 Congruences et imaginaires de Galois 4.3 Applications theoriques (google 英訳) History The theory of finite fields first develops, like the study of congruences, on integers and on polynomials, then from the very end of the nineteenth century, as part of a general theory of commutative bodies. Congruences and imaginations of Galois The study of the first finite fields is systematically treated, in the form of congruences, by Gauss in his Disquisitiones arithmeticae published in 1801, but many of these properties had already been established by Fermat, Euler, Lagrange and Legendre, among others. In 1830 Evariste Galois published28 what is considered as the founding article of the general theory of finite bodies. Galois, who claims to be inspired by Gauss's work on entire congruences, deals with polynomial congruences, for an irreducible polynomial with coefficients taken themselves modulo a prime number p. More precisely, Galois introduces an imaginary root of a congruence P (x) = 0 modulo a prime number p, where P is an irreducible polynomial modulo p. He notes i this root and works on expressions: a + a1 i + a2 i2 + ... + an-1 in-1 where n is the degree of P. Retraduced in modern terms, Galois shows that these expressions form a cardinality body pn, and that the multiplicative group is cyclic (Kleiner 1999,). He also notes that an irreducible polynomial that has a root in this body, has all its roots in it, that is, it is a normal extension of its first subfield ( Lidl and Niederreiter 1997). He uses the identity given by what has been called since the Frobenius automorphism (Van der Waerden 1985). In 1846, Liouville, at the same time as he published Galois' famous memoir on the resolution of polynomial equations, republished this article in his Journal of Pure and Applied Mathematics. (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1571400076/335
336: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/01(金) 07:59:45.68 ID:rcKeDs9u >>335 補足 仏語wikipediaだけど commutative bodies. は、可換体 Corpsを、google 英訳では、bodiesと訳すみたい(^^; http://rio2016.5ch.net/test/read.cgi/math/1571400076/336
340: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/01(金) 12:28:10.24 ID:jBvN9kSg >>335 独語 有限体 https://de.wikipedia.org/wiki/Endlicher_K%C3%B6rper Endlicher Korper (抜粋) Inhaltsverzeichnis 1 Beispiel: Der Korper mit 2 Elementen 2 Klassifikation endlicher Korper 3 Multiplikative Gruppe und diskreter Logarithmus 4 Weitere Beispiele 4.1 Der Korper mit 4 Elementen 4.2 Der Korper mit 49 Elementen 4.3 Der Korper mit 25 Elementen 5 Zur historischen Entwicklung Zur historischen Entwicklung Dass man mit Zahlen modulo einer Primzahl ?wie mit rationalen Zahlen“ rechnen kann, hatte bereits Gaus gezeigt.[1] Galois fuhrte in die Rechnung modulo p imaginare Zahlgrosen ein, ganz so wie die imaginare Einheit {i} in den komplexen Zahlen. Damit hat er wohl als erster Korpererweiterungen von {F}_{p} betrachtet ? wenn auch der abstrakte Korperbegriff erst 1895 durch Heinrich Weber eingefuhrt wurde und Frobenius als Erster diesen 1896 auf endliche Strukturen ausdehnte. Daneben bzw. zuvor hat offenbar Eliakim Hastings Moore 1893 bereits endliche Korper studiert und den Namen Galois field eingefuhrt.[2] (google 英訳) On the historical development Gauss had already shown that one can count on numbers modulo a prime "as with rational numbers". [1] Galois introduced into the calculation modulo p imaginary numbers, much like the imaginary unit {i} in the complex numbers. He was probably the first body extension of {F}_{p} - although the abstract concept of the body was first introduced by Heinrich Weber in 1895 and Frobenius was the first to introduce it in 1896 extended to finite structures. In addition, or before apparently Eliakim Hastings Moore 1893 already studied finite body and introduced the name Galois field. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1571400076/340
341: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/01(金) 12:36:17.34 ID:jBvN9kSg >>340 有限体 Endlicher Korper (google 英訳) finite body (^^; Korperは、身体という意味があって 仏語のCorps(>>335)も、独語から来ている 英語では、Finite field。だれが、この訳語にしたのかな?(^^ 日本語の用語”体”は、明治の数学者たちがドイツで学んだからの訳語でしょう http://rio2016.5ch.net/test/read.cgi/math/1571400076/341
342: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/11/01(金) 12:44:22.80 ID:jBvN9kSg >>335の仏版と>>340の独版を比べると お国自慢が見えて面白ね ロシア(旧ソ連)で、よくあるが ロシアでも、ヨーロッパと同じころに 独自に考えていた人がいるという話しが、よく出てくる(^^ http://rio2016.5ch.net/test/read.cgi/math/1571400076/342
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s