[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 http://rio2016.5ch.net/test/read.cgi/math/1571400076/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
18: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/10/19(土) 19:25:01.03 ID:ti2BclkQ S5の位数20の部分群 https://groupprops.subwiki.org/wiki/General_affine_group:GA(1,5) General affine group:GA(1,5) (抜粋) As GA(1,q), q = 5: q(q - 1) = 5(5 - 1) = 20 As holomorph of cyclic group:Z5: |Z5||Aut(Z5)| = 5・4 = 20 As Sz(q), q = 2: q^2(q^2 + 1)(q - 1) = 2^2(2^2 + 1)(2 - 1) = 4・5・1 = 20 Group properties Function Value abelian group No nilpotent group No metacyclic group Yes supersolvable group Yes solvable group Yes Frobenius group Yes Camina group Yes https://people.maths.bris.ac.uk/~matyd/ Tim Dokchitser Arithmetic/Algebraic Geometry University of Bristol https://people.maths.bris.ac.uk/~matyd/GroupNames/1/F5.html G = F5? order 20 = 2^2・5 Frobenius group Tim Dokchitser https://groupprops.subwiki.org/wiki/General_affine_group_of_degree_one General affine group of degree one GA(1,K) = K semix K^* https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%95%E3%82%A3%E3%83%B3%E7%BE%A4 アフィン群 https://en.wikipedia.org/wiki/Frobenius_group Frobenius group (抜粋) In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius. Structure A subgroup H of a Frobenius group G fixing a point of the set X is called the Frobenius complement. The identity element together with all elements not in any conjugate of H form a normal subgroup called the Frobenius kernel K. (This is a theorem due to Frobenius (1901); there is still no proof of this theorem that does not use character theory, although see [1].) The Frobenius group G is the semidirect product of K and H: G=K semix H つづく http://rio2016.5ch.net/test/read.cgi/math/1571400076/18
19: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/10/19(土) 19:25:28.89 ID:ti2BclkQ >>18 つづき (スレ77 https://rio2016.5ch.net/test/read.cgi/math/1568026331/884- より) http://www.isc.meiji.ac.jp/~kurano/soturon/ronbun/08kurano.pdf 2008 年度卒業研究 S_3, S_4, S_5 の部分群の分類 (抜粋) P3 S5の部分群 位数20: < (12345), (2354) > S5中の共役な群6個 http://www.isc.meiji.ac.jp/~kurano/soturon/ronbun/04kurano.pdf 2004 年度卒業研究 位数 30 以下の群の分類 (抜粋) P3 位数20 5個; アーベル:C4 × C5, C2 × C2 × C5 2個, 非アーベル: C5 semix C4, Q20, D20 3個 P16 11 位数 20 の群の分類 https://en.wikipedia.org/wiki/List_of_small_groups List of small groups (抜粋) List of small abelian groups 位数20 51 G202 Z20 = Z5 × Z4 Z10, Z5, Z4, Z2 GroupDiagramMiniC20.svg Cyclic. Product. 54 G205 Z10 × Z2 = Z5 × Z22 Z5, Z2 GroupDiagramMiniC2C10.png Product. List of small non-abelian groups 位数20 50 G201 Q20 = Dic5 = <5,2,2> GroupDiagramMiniQ20.png Binary dihedral group 52 G203 Z5 semix Z4 GroupDiagramMiniC5semiprodC4.png Frobenius group 53 G204 Dih10 = Dih5 × Z2 = D20 GroupDiagramMiniD20.png Dihedral group, product (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1571400076/19
21: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/10/19(土) 19:34:42.00 ID:ti2BclkQ >>19 追加 >非アーベル: C5 semix C4, Q20, D20 3個 S5の位数20の部分群は、 非アーベル: C5 semix C4 (C5とC4の半直積) (>>18より) abelian group No nilpotent group No metacyclic group Yes supersolvable group Yes solvable group Yes Frobenius group Yes ということです おっと、General affine group:GA(1,5) (線形群でもあります) 鈴木群 Sz(q), q = 2: q^2(q^2 + 1)(q - 1) = 2^2(2^2 + 1)(2 - 1) = 4・5・1 = 20 (>>18) なんだって(^^; http://rio2016.5ch.net/test/read.cgi/math/1571400076/21
58: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/20(日) 13:28:47.86 ID:f+LcfVi/ >>18 Terence TaoのFrobenius group追加 https://terrytao.wordpress.com/2013/04/12/the-theorems-of-frobenius-and-suzuki-on-finite-groups/ What's new Updates on my research and expository papers, discussion of open problems, and other maths-related topics. By Terence Tao Tag Archive You are currently browsing the tag archive for the ‘Frobenius groups’ tag. The theorems of Frobenius and Suzuki on finite groups 12 April, 2013 in expository, math.GR, math.RT | Tags: CA groups, characters, classification of finite simple groups, Fourier transform, Frobenius groups, Frobenius theorem, induced representations, integrality gap, Suzuki theorem 略 3 June, 2013 at 1:03 pm Terence Tao Yes, this is something I would like to understand better myself. One of the funny things coming out of Suzuki’s analysis is that to every (Weyl group conjugacy class of a) character \xi_{i,a} on a (conjugacy class of a) maximal abelian subgroup H_i of G there is associated an “exceptional character” \xi^*_{i,a} of G which is a component of the induced representation of G coming from the character of H_i (or sometimes, a bit weirdly, it is an “anti-component”, if the sign \epsilon_i is negative), and略 27 June, 2013 at 12:19 pm Terence Tao The original reference is G. Frobenius, “Ueber auflosbare Gruppen IV” Sitzungsber. Preuss. Akad. Wissenschaft. (1901) pp. 1216?1230 but it may be difficult to locate (see http://math.stackexchange.com/questions/222167/where-can-i-find-the-original-papers-by-frobenius-concerning-solutions-to-xn for some related discussion). A somewhat more modern reference is I.M. Isaacs, “Character theory of finite groups” , Acad. Press (1976) http://rio2016.5ch.net/test/read.cgi/math/1571400076/58
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.039s