[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
36(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)00:45 ID:f+LcfVi/(1/25) AAS
>>24
(引用開始)
ガロア群が巡回群
(実はα はω_{11} を 1 の原始 n 乗根として
α=ω_{11}+ω_{11}^10
と表すことができる。)
(引用終り)
省17
37(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)00:54 ID:f+LcfVi/(2/25) AAS
>>21
(引用開始)
S5の位数20の部分群は、
非アーベル: C5 semix C4 (C5とC4の半直積)
abelian group No
nilpotent group No
metacyclic group Yes
省12
38(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)01:05 ID:f+LcfVi/(3/25) AAS
>>19
補足
位数20から
外部リンク[pdf]:www.isc.meiji.ac.jp
2004 年度卒業研究 位数 30 以下の群の分類
に書いてあるけど
P16
省9
43(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)07:39 ID:f+LcfVi/(4/25) AAS
>>39
ID:1gpHuTQEさん、どうも。スレ主です。
レスありがとう
(引用開始)
>これは、当然素数5の群だから巡回群C5だが
>アーベルと、非アーベルに分けて
いやいや、C_5は唯一つしか存在しませんよ。当然アーベル群です。
省16
45(9): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)07:56 ID:f+LcfVi/(5/25) AAS
>>40
>S_5の部分群を分類しても、それが実際に既約5次方程式のガロア群になりうるかはまた別の話。
"ガロアの逆問題" ですね
”All permutation groups of degree 16 or less are known to be realizable over Q [4]; the group PSL(2,16):2 of degree 17 may not be [5].”
なので、S_5の場合は、答えは”Yes”ですね
(参考)
外部リンク:ja.wikipedia.org
省14
46(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)07:57 ID:f+LcfVi/(6/25) AAS
>>45
つづき
外部リンク:en.wikipedia.org
Inverse Galois problem
(抜粋)
Question, Web Fundamentals.svg Unsolved problem in mathematics:
Is every finite group the Galois group of a Galois extension of the rational numbers?
省19
48: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)08:00 ID:f+LcfVi/(7/25) AAS
>>44
なんだ、おさる の ぼくちゃん かいw(^^
>そもそも何がしたいのかワケワカラン
そりゃ、わからんだろう、あんたにはw
51(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)09:29 ID:f+LcfVi/(8/25) AAS
>>47
無理しなくていいぞ
>位数はp(p−1)で非可換群
位数がp(p−1)だから非可換とは言えないだろう?
例えば、P=7で、p(p−1)=42=7x3x2
と分解して、各巡回群の直積
C7xC3xC2 を考えたら
省30
52: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)09:39 ID:f+LcfVi/(9/25) AAS
>>49
>やれよw まっさきに
>馬鹿がダメなのは、手を動かして計算しないこと
何年か前に、このガロアスレを立ち上げる前に
5次の交代群の置換の表は、手で作った
位数20の置換の表も作った
(エクセルに打ち込んだのだが)
省6
53(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)09:46 ID:f+LcfVi/(10/25) AAS
>>42
(引用開始)
前スレID:ospgeXvi氏が可解5次方程式を「分類する」という
問題意識を持っていたが、単に分類するだけでは面白くない。
むしろ「パラメトライズする」ような数学構造を見つけることが重要なのでは。
それでたとえば、中間体MとしてQ上ガロア群C_4またはC_2を持つ
任意の体が生じうるか? とか、生じるなら係数によってどうパラメトライズされるか
省8
54(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)09:49 ID:f+LcfVi/(11/25) AAS
>>53
>the group PSL(2,16):2 of degree 17 may not be [5].”
”may not be”だから、多分だめってこと
それは、この部分でさえ、未決着か(゜ロ゜;
まあ、”可能”を証明するのは、例を1つ出せば良い
だが、不可能を証明するのは、簡単じゃないんだね(^^;
57(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)13:00 ID:f+LcfVi/(12/25) AAS
>>51 補足
>無理しなくていいぞ
おさる の ぼくちゃん
前スレで(下記)「自分の頭を通して書いている」なんて言われていたが(^^
<おれの推定>
1)まあ、学部レベルで一通り、一般レベルの方程式のガロア理論はやったんだろう
だが、その学部レベルとは、たいていは、アルティンの本レベルで、
省20
58: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)13:28 ID:f+LcfVi/(13/25) AAS
>>18
Terence TaoのFrobenius group追加
外部リンク:terrytao.wordpress.com
What's new
Updates on my research and expository papers, discussion of open problems, and other maths-related topics. By Terence Tao
Tag Archive
You are currently browsing the tag archive for the ‘Frobenius groups’ tag.
省14
62(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)17:30 ID:f+LcfVi/(14/25) AAS
外部リンク:ja.wikipedia.org
原始元定理
(抜粋)
体論において、原始元定理 (primitive element theorem) あるいは原始元に関するアルティンの定理 (Artin's theorem on primitive elements) は原始元 (primitive element) をもつ有限次体拡大すなわち単拡大を特徴づける結果である。定理は有限次拡大が単拡大であることと中間体が有限個しかないことが同値であるというものである。とくに、有限次分離拡大は単拡大である。
存在の主張
定理の解釈は 1930 年頃エミール・アルティンの理論の定式化で変わった。ガロワの時代から、原始元の役割は分解体をただ1つの元で生成されるものとして表現することだった。そのような元のこの(任意の)選択は Artin の扱いにおいて避けられる[1]。同時に、そのような元の構成の考慮は退く:定理は存在定理 になる。
すると以下のアルティンの定理は古典的な原始元定理に取って代わる。
省7
63(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)17:31 ID:f+LcfVi/(15/25) AAS
>>62
つづき
構成的結果
一般に、有限分離拡大 L / K に対するすべての原始元からなる集合は L の真の K-部分空間すなわち中間体の有限の集まりの補集合である。このステートメントは有限体のケースについては何も言っていない。
有限体に対しては体の乗法群(巡回群)の生成元、これは当然原始元である、を見つけるために捧げられた計算理論が存在する。K が無限のときは、鳩ノ巣原理により証明できる。2元で生成された線型部分空間を考えると、c を K の元とする線型結合
γ =α +cβ
は有限個しかなく両方の元を含む部分体を生成できないことが証明される。
省9
64: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)17:32 ID:f+LcfVi/(16/25) AAS
>>63
つづき
準備的注意
単拡大の概念は、主に次の二つの点から数学上の興味を集めている。
・単拡大は分類が完了している体拡大である。拡大の生成元が K 上超越的なら無限次拡大で有理関数体に同型(フランス語版)であり、 生成元 α が代数的なら拡大は有限で、α の K 上の最小多項式の根体に同型である。
・原始元の定理はすべての有限次分離拡大が単拡大であることを保証する。代数拡大はそのすべての元の最小多項式が重根をもたないときに分離的という。
有限拡大の分離性のいろいろな同値条件に加えて、代数拡大が分離的であるための十分条件は基礎体が完全体(例えば標数 0 あるいは有限体)であることである。
省15
68(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)17:52 ID:f+LcfVi/(17/25) AAS
>>62
メモ
”ガロア理論:単拡大定理の意義”
外部リンク[html]:qa.itmedia.co.jp
ガロア理論:単拡大定理の意義 ITmedia 解決済みの質問 投稿日時 - 2012-11-24
(抜粋)
ガロア理論で,有理数体を係数体として,その根をx1,x2,...xnとしたとき,これらの根を添加した体Q(x1,x2,...xn)と単拡大定理を使った拡大Q(V(x1,x2,...xn)とはどこが違うのでしょうか.もちろん表現として違うことはわかりますが,この根を変数とするパラメータVが存在することによって,体を扱う上で何が違うのでしょうか.単拡大定理の存在理由が今一つわからないので,教えてください.
省24
69: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)17:53 ID:f+LcfVi/(18/25) AAS
>>68
つづき
これに簡単に「こっちがイイ!」と答えられるのであれば
どっちかの表現は不要かもしれません.
けど・・・大抵はどっちも必要なんです.
理論を展開するには「x+y」だけのほうがきっとシンプルなことが多い.
けど,次数とか要素を具体的に計算するのはきっと「x,y」のほうがシンプルなことが多いです.
省6
71(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)18:08 ID:f+LcfVi/(19/25) AAS
>>65
(引用開始)
Gal(L/Q)=F_20 なる可解5次方程式の分解体LとQの中間体として、Gal(M/Q)=C_4
となる中間体Mが存在しますが、逆にGal(F/Q)=C_4 なるFがあるとき、Fは上記のMとして実現するか?
という問題です。
(引用終り)
その話だと、いわゆるガロア対応で、体の拡大と正規部分群との対応じゃないですか?(下記)
省13
72: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)18:09 ID:f+LcfVi/(20/25) AAS
>>71
つづき
対応の明示的な記述
有限拡大に対し、対応は次のように明示的に述べることができる。
・Gal(E/F) の任意の部分群 H に対し、対応する体は普通 E^H と書かれ、これは全ての H の自己同型により固定される E の元の集合である。
・E/F の任意の中間体 K に対し、対応する部分群は、単に Aut(E/K) であり、これは全ての K の元を固定する Gal(E/F) に属する自己同型の集合である。
例えば、一番上の体 E は Gal(E/F) の自明な部分群に対応し、基礎体 F は Gal(E/F) の全体に対応する。
省16
74(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)18:13 ID:f+LcfVi/(21/25) AAS
>>67
>ガロア逆問題って"解き方"が重要なんであって
>逆問題の解でも"質"というのがあるんじゃないかと思う。
>つまり、良質な解と、ともかく存在は示せたが応用はないなという解があるんじゃないかと。
そうだとは思うけれども
未解決問題だということの方が
重要じゃないですかね?
省1
77(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)19:10 ID:f+LcfVi/(22/25) AAS
>>66
どうも。スレ主です。
>ちなみにQ上とは限らず基礎体を任意の代数体に動かしてもいいなら、任意の有限群を
>ガロア群として持つガロア拡大が存在することは簡単に分かるんですよ。
分かりません(^^
例えば仮に、
「the group PSL(2,16):2 of degree 17 may not be [5].”」
省6
78: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)19:13 ID:f+LcfVi/(23/25) AAS
>>75
そりゃそうだ
おれが、いま考えてできる程度の問題なら、とっくに解かれているさ(^^
82(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)21:37 ID:f+LcfVi/(24/25) AAS
>>80
何を言っているのか分かりません。
ヒント:
1)
外部リンク:en.wikipedia.org
Inverse Galois problem
(抜粋)
省17
83(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/20(日)21:42 ID:f+LcfVi/(25/25) AAS
>>81
ご苦労さん
非可換の計算が出来るんだね
えらいえらい
だけどさ
その x→ ax+b とか、フロベニウスとか
情報は、全部おれが提供してんだけど?
省2
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s