[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
805
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)12:02 ID:w6tqRMw5(5/18) AAS
>>802
> 5次以上の代数方程式の根はよっぽど幸運でもない限り

いやね
5次の代数方程式のガロア群が、正20面体群になるんだけど(下記)
正20面体群がいまいち、すっきりしたイメージが湧かないので
(証明では、位数60の単純群までしか分解できないのは、長さ3と5の置換の組合わせで位数60になるというのだけれど・・)
下記の「正20面体と5次方程式 (シュプリンガー数学クラシックス)」も、買って読みましたよ
省25
807: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/14(月)12:09 ID:w6tqRMw5(7/18) AAS
>>805
>詳しい歴史ならびに関係する7文字と11文字の対称性については正二十面体的対称性#関連する幾何学的性質(英語版)を見よ。

下記(”Klein's investigations continued with his discovery of order 7 and order 11 symmetries”)だね
外部リンク:en.wikipedia.org
Icosahedral symmetry
(抜粋)
A regular icosahedron has 60 rotational (or orientation-preserving) symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation.
省7
808: Mara Papiyas ◆y7fKJ8VsjM 2019/10/14(月)12:50 ID:llLaGKvq(6/12) AAS
>>805
>正20面体群がいまいち、すっきりしたイメージが湧かないので

馬鹿はイメージで分かると思ってる
考えずに見ようとするのは動物のやり方

>5次の代数方程式が代数的に解けるのは
>方程式のガロア群が、線形群と書いていたけど、
>位数20の群になるとき
省5
809
(1): 2019/10/14(月)13:51 ID:keS+8+Fy(1) AAS
>>805

なお、5次の代数方程式が代数的に解けるのは、方程式のガロア群が
彌永先生の本や倉田本では、線形群と書いていたけど、位数20の群になるとき

え?こんなの成立しないよ?
Q上5次のGalois拡大あるけど?
901
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)23:51 ID:OrOarbJT(12/12) AAS
>>896-897
なにを狼狽して誤魔化そうとしているんだ??w(^^;

 >>890より
(引用開始)
「S_3, S_4, S_5 の部分群の分類」のところで
S_5の位数20の部分群も出てるぞ
(12345), (2354) が生成群だから
省30
904
(2): 2019/10/17(木)00:29 ID:rXxqe236(1/8) AAS
>この「S_5の位数20の部分群 (12345)x(2354)」は
> >>805に書いておいたが、べき根で可解な既約5次方程式での最大の群だよ
>この5次方程式は、二項方程式ではない

x^3-2=0 という方程式のQ上のガロア群はS_3だが
1の3乗根を添加した体上ではC_3に縮小する。
一般3次方程式のガロア群はS_3だが
1の3乗根を添加してもS_3のまま。
省4
911
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)07:09 ID:khSgay+Z(3/9) AAS
>>904
ID:rXxqe236さん、どうも。スレ主です。
レスありがとう(^^

(引用開始)
>この「S_5の位数20の部分群 (12345)x(2354)」は
> >>805に書いておいたが、べき根で可解な既約5次方程式での最大の群だよ
>この5次方程式は、二項方程式ではない
省28
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.127s