[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
757
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/09(水)11:16 ID:nHmzRvjt(3/8) AAS
つづき

類等式
G が有限群であれば、群の任意の元 a に対して、a の共役類の元は中心化群 CG(a) の剰余類と 1 対 1 の対応にある。このことは次のことを観察することによってわかる。同じ剰余類に属する任意の 2 元 b, c (したがって中心化群 CG(a) のある元 z に対して b = zc)は a を共役するときに同じ元を生じる: b^-1ab = (zc)^-1a(zc) = c^-1z^-1azc = c^-1ac.

したがって a の共役類の元の数は G における中心化群 CG(a) の指数 [G : CG(a)] である。したがって各共役類の元の数は群の位数を割り切る。

さらに、各共役類からひとつずつ代表元 xi を選べば、共役類の非交性から |G| = ?i |xiG| = ?i [G : CG(xi)]がいえる。中心 Z(G) の各元はそれ自身だけを含む共役類をなすことに注意すれば、類等式 (class equation) を得る[4]:

|G| = |Z(G)| + ?i [G : CG(xi)]
ただし和は中心に含まれない各共役類からの代表元を渡る。
省2
758
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/09(水)11:17 ID:nHmzRvjt(4/8) AAS
>>757
つづき

応用例
非自明な有限 p-群 P(つまり位数 pn の群、ただし p は素数で n > 0)を考えよう。類等式を使うと

「すべての非自明な有限 p-群は非自明な中心をもつ」
ことが証明できる[9]。

証明:P の任意の共役類の元の数は P の位数を割らなければならない。よって中心に含まれていない各共役類 Ci の元の数もまたあるベキ pki(ただし 0 < ki < n)であることが従う。すると類等式から pn = |P| = |Z(P)| + ?i pki となる。ゆえに p は |Z(P)| も割らなければならず、したがって |Z(P)| > 1 であることがわかる。
省10
765
(1): 2019/10/09(水)19:18 ID:gm3ls/Yz(6/7) AAS
>>755-759
理解を試すために質問するね

ガロア理論で「群の正規列」(正規部分群の列)って出てくるね

これ、なんで部分群の列じゃダメなの?

分かってる人は簡単にこたえられる質問だね
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s