[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
66(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)08:12 ID:cMDg8k3q(2/6) AAS
>>55 追加
分かりました、分かりました(^^
要するに、正則性公理→フォン・ノイマン宇宙やね
そして、我々が通常学部数学扱う集合は、フォン・ノイマン宇宙内
フォン・ノイマン宇宙内は、「遺伝的整礎集合全体のクラス」
で、モストフスキ崩壊補題(>>37)「ZFの集合モデルは集合状かつ外延的である。 モデルが整礎的なら本補題により、ZFの推移的モデルと一意的に同型である」
なので、普通(ZFC内で)はベン図で議論してよいってことだな(^^
省16
67(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)08:13 ID:cMDg8k3q(3/6) AAS
>>66
つづき
外部リンク:ja.wikipedia.org
フォン・ノイマン宇宙
(抜粋)
フォン・ノイマン宇宙 Vとは、遺伝的整礎集合全体のクラスである。この集まりは、ZFCによって定義され、ZFCの公理に解釈や動機を与えるためにしばしば用いられる。
整礎集合の階数(rank)はその集合の全ての要素の階数より大きい最小の順序数として帰納的に定義される。
省16
68(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)08:17 ID:cMDg8k3q(4/6) AAS
>>64
>一般の集合 ⊃ 推移的集合 ⊃ 順序数
(>>66より)
「正則性公理は全ての集合が整礎的であることを要求していて、だからZFCでは全ての集合がVに属する。
しかし、正則性公理を除いたり否定するような別の公理系を考えることも可能である(例えばen:Aczel's anti-foundation axiom)。
このような非整礎集合の集合論は一般的に採用はされていないが、研究する余地はある。」
(フォン・ノイマン宇宙 ja.wikipediaより)
省8
77(1): 2019/09/12(木)19:30 ID:0bjYSisu(5/6) AAS
>>66
>普通(ZFC内で)はベン図で議論してよいってことだな
これはヒドイw
>>68
>非整礎集合の集合論を考えていたのか
これもヒドイw
{{{}}}(順序数どころか推移的集合でもない)
省14
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s