[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 http://rio2016.5ch.net/test/read.cgi/math/1568026331/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
912: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/17(木) 07:37:43.55 ID:khSgay+Z >>909 ぱち ぱち ぱち、拍手! ご苦労さんw(^^; さて、じゃおれも (>>858より 下記”1のn乗根 (Joh著)”から) 「Q 上のベクトル空間と見た場合には ζ , ζ^2 ,..., ζ^n-1 が基底を張ることになります. あれ, 1 は基底に無いのでしょうか?要りません.」 の話において 「1+ζ + ...+ζ ^n-1=0 がなりたつため, ζ , ζ^2 ,..., ζ^n-1 と 1 は独立ではないのです.」 は、ベクトル空間の基底で”1は不要”の話は、”1”みならず、任意のζ^m (1<=m<=n-1)の1つを基底から外すことが可能 (∵ 1+ζ + ...+ζ ^n-1=0で、一次従属なので、どれでも1つを外すことが可能) よって、群を考えるときは、単位元が欲しいので、 最上位のζ ^n-1を外して ”1 , ζ , ζ^2 ,..., ζ^n-2 とn-1個 が基底を張る”とすれば、 クンマー拡大の巡回拡大(>>911)と同じ議論に乗ります (^^ (参考) http://hooktail.sub.jp/algebra/1sNthRoot/ 1のn乗根 (Joh著) 物理のがきしっぽ (抜粋) 系 Q に 1 の n 乗根 ζ を添加した拡大体を E とすると, [E:Q]=φ (n) がなりたちます. さらにガロア群 G (E/Q) は Zn^xに同型となります. 拡大体の基底に関する注意 拡大体の次数について注意です. x^n-1 の解 ζ を使い,拡大体 Q(ζ) を考えます. Q(ζ) の元は,一般に a1ζ + a2ζ^2 +...+an-1ζ^n-1 と表わされ, Q 上のベクトル空間と見た場合には ζ , ζ^2 ,..., ζ^n-1 が基底を張ることになります. あれ, 1 は基底に無いのでしょうか?要りません. ベクトルの足し算だと思って図形的に考えればすぐに分かりますが, 1+ζ + ...+ζ ^n-1=0 がなりたつため, ζ , ζ^2 ,..., ζ^n-1 と 1 は独立ではないのです. 1 の n 乗根を添加するとき,拡大次数を間違わないように注意して下さい. http://hooktail.sub.jp/algebra/1sNthRoot/Joh-SolvExample1.gif 例えば 1 の五乗根. 1+ζ + ζ^2 +ζ^3 + ζ^4=0 となる. (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1568026331/912
913: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/17(木) 07:47:58.84 ID:khSgay+Z >>912 > 1+ζ + ...+ζ ^n-1=0 これは、二項方程式 x^n - 1=0 で、 下記の根と係数の関係を適用すると 上記の方程式のn-1次の項が0であることから 導かれるね https://ja.wikipedia.org/wiki/%E6%A0%B9%E3%81%A8%E4%BF%82%E6%95%B0%E3%81%AE%E9%96%A2%E4%BF%82 根と係数の関係 (抜粋) 根と係数の関係 n 個の文字 α1, α2, ..., αn に関する p 次基本対称式を s p(α1, α2, ..., αn) あるいは単に sn,p とする。 例えば sn,1 = α1 + α2 + … + αn, ・ ・ sn,n = α1α2… αn. x に関する n 次式 anx^n + an?1x^n?1 + … + a1x + a0 の根が α1, α2, ..., αn であるとき、 sn,n-k=(-1)^{n-k}・ak/an (k = 0, 2, ..., n ? 1)が成り立つ。これを多項式の根と係数の関係という。 http://rio2016.5ch.net/test/read.cgi/math/1568026331/913
914: 132人目の素数さん [sage] 2019/10/17(木) 08:05:51.25 ID:rXxqe236 >>912 ご参考にされてるHPは混乱してるのか、間違ったことも混じって書いてありますね。 定理として書いてある 「ζ=exp(2πi/n)の最小多項式は{1,ζ,ζ^2,...,ζ^{n-1}}の全てを解として持ちます.」 は明確に誤り。最小多項式の次数はφ(n)次なので、φ(n)個しか根を持ちえません。 (最小多項式)≠x^n-1 です。 あと、ζ,ζ^2,...,ζ^{n-1}が基底をなすように書いてありますが、これも素数でないnに対しては誤り。 Q上のベクトル空間としての次元もφ(n)なので、基底の個数もφ(n)個です。 http://rio2016.5ch.net/test/read.cgi/math/1568026331/914
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s