[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 http://rio2016.5ch.net/test/read.cgi/math/1568026331/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
755: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 11:15:54.73 ID:nHmzRvjt >>718 >正規部分群の手前の変換σ-1・H・σ自身の理解が不正確でした >みなさんに、教えて頂きました >ありがとう(^^ 変換σ-1・H・σは、共役変換というんだけど(^^ 下記の共役類wikipediaに詳しい ((編集されて変わることがあるので)スナップショットとして抜粋コピペするけど文字化けご容赦。原文リンク見た方が良いだろう) 元で書くと、σ-1・h・σだけど、積演算(・)が可換(アーベル)だと、 σ-1・h・σ=σ-1・σ・h=hなので 高校数学の範囲では可換ばかりだから、”何が、そんなにうれしいのか!?”となるのよw(^^ 大学数学で非可換を勉強すると分かる。群論を、これからやる人、いまやっている人は、”共役”を理解しておくといい https://ja.wikipedia.org/wiki/%E5%85%B1%E5%BD%B9%E9%A1%9E 共役類 (抜粋) とくに群論において、任意の群は共役類(きょうやくるい、英: conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする[1][2][要ページ番号]。 定義 G を群とする。G の2つの元 a と b が共役 (きょうやく、conjugate) であるとは、G の元 g が存在して b = g^-1ag を満たすことである[注釈 1]。ここで元 g^-1ag を ag のように表すこともある[3]。 共役性は同値関係であり、したがって G を同値類に分割する[注釈 2]ことが直ちに示せる。G の元 a を含む同値類 aG = { ag | g ∈ G } は a の共役類 (conjugacy class) と呼ばれる[4]。群 G の共役類が C1, …, Ch であるとき数 k(G) := h を類数[訳語疑問点] (class number) と呼ぶ[4]。 一般に、対称群 Sn の共役類の数は n の分割の数に等しい。これは各共役類が、 {1, 2, ..., n} の元の並び替えを除いて、{1, 2, ..., n} のちょうど 1 つの分割を巡回置換(英語版)の集まりと見做したものに対応するからである。 立方体の(自明でない)回転(英語版)は、(面ではなく立体としての)対角線に関する置換として特徴づけることができるが、これも共役変換として記述することができる。 ユークリッドの運動群はユークリッド空間における対称性の共軛変換(英語版)によって調べられる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1568026331/755
756: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/10/09(水) 11:16:25.54 ID:nHmzRvjt >>755 つづき 性質 ・G の 2 元 a と b が共役ならば、同じ位数をもつ。より一般に、a についてのすべてのステートメントは b = g^-1ag についてのステートメントに翻訳できる、なぜならば写像 φ(x) = g^-1xg は G の内部自己同型だからである。 ・G の元 a に対して、 {a} が共役類であることと a が中心 Z(G) に属することは同値である。 ・有限群の共役類の元の数は群の位数を割り切る。より精密には共役類 aG の元の数 |aG| は a の G における中心化群 CG(a) = { g ∈ G | ga = ag } の指数 [G : CG(a)] に等しい[4]。これは共役作用に関する軌道・固定群定理による。 ・a と b が共役であれば、それらのベキ ak と bk も共役である[注釈 3]。したがって k 乗をとることは共役類上の写像を与え、どの共役類がその原像にあるかを考えることができる。例えば、対称群において、type (3)(2) (3-cycle と 2-cycle) の元の平方は type (3) の元であり、それゆえ (3) の power-up 類の 1 つは類 (3)(2) である。類 (6) は別の類である。 ・群 G の位数が奇数ならば |G| ≡ k(G) (mod 16) が成り立つ (W. Burnside)[5]。 ・有限群 H, K に対して k(H × K) = k(H) × k(K) が成り立つ[6]。 ・有限群 G とその正規部分群 N に対して [G : N]^-1 k(N) <= k(G) <= k(G/N) k(N) が成り立つ[7]。 ・自然数 h が与えられたとき、k(G) = h となる有限群 G は同型を除いて高々有限個しかない (E. Landau, 1903)[8]。 つづく http://rio2016.5ch.net/test/read.cgi/math/1568026331/756
765: 132人目の素数さん [] 2019/10/09(水) 19:18:45.73 ID:gm3ls/Yz >>755-759 理解を試すために質問するね ガロア理論で「群の正規列」(正規部分群の列)って出てくるね これ、なんで部分群の列じゃダメなの? 分かってる人は簡単にこたえられる質問だね http://rio2016.5ch.net/test/read.cgi/math/1568026331/765
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.046s