[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 http://rio2016.5ch.net/test/read.cgi/math/1568026331/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
74: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/12(木) 12:05:29.45 ID:2dM7jvB/ >>73 追加 https://ja.wikipedia.org/wiki/%E6%95%B4%E7%A4%8E%E7%9A%84%E9%9B%86%E5%90%88 整礎的集合 (抜粋) 整礎的集合(せいそてきしゅうごう、well-founded set)とは、空集合に和集合演算やべき集合演算などの集合演算を繰り返し施すことにより得られる集合である。 集合の階数 整礎的集合 x に対して、x ∈ Vα + 1 をみたす最小の順序数 α を x の階数(rank)といい、これを rank(x) で表す。 rank(x) = sup {rank(y)+1 | y ∈ x} が成立する。 正則性公理と整礎的集合 正則性公理を用いると、すべての集合が整礎的であることが示される。したがって、すべての集合に階数が定義される。 http://rio2016.5ch.net/test/read.cgi/math/1568026331/74
75: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/12(木) 13:33:21.57 ID:2dM7jvB/ >>74 追加 (>>36より再録) ・(>>31より)∈−順序は、推移的なので、xの任意の元 u ∈ x が成立つと、x ∈ y → u ∈ y成立(∵推移性より) だから、この場合は”x ∈ y → x ⊂ y ”成立 (引用終り) 順序というのは、すべからく、推移律を満たすものである(下記)w(^^; https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E9%9B%86%E5%90%88 順序集合 (抜粋) 定義 全順序集合、半順序集合、およびこれらよりさらに弱い概念である前順序集合の定義を述べる為にまず以下の性質を考える。ここで P は集合であり、「<=」を P 上で定義された二項関係とする。 ・反射律:P の任意の元 a に対し、a <= a が成り立つ。 ・推移律:P の任意の元 a, b, c に対し、a <= b かつ b <= c ならば a <= c が成り立つ。 ・反対称律:P の任意の元 a, b に対し、a <= b かつ b <= a ならば a = b が成り立つ。 ・全順序律:P の任意の元 a, b に対し、a <= b または b <= a が成り立つ。 「<=」が全順序律を満たさない場合、「a <= b」でも「b <= a」でもないケースがある。このようなケースにあるとき a と b は比較不能 (incomparable) であるという。 前順序・半順序・全順序 P を集合とし、<= を P 上で定義された二項関係 とする。 ・<= が反射律と推移律を満たすとき、<= を P 上の前順序(英語版)という。 ・<= が前順序でありさらに反対称律を満たすとき、<= を P 上の半順序という。 ・<= が半順序でありさらに全順序律を満たすとき、<= を P 上の全順序という。 <= が前順序であるとき (P, <=) を前順序集合という。同様に <= が半順序なら (P, <=) は半順序集合、全順序なら (P, <=) は全順序集合という。 http://rio2016.5ch.net/test/read.cgi/math/1568026331/75
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.046s