[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 http://rio2016.5ch.net/test/read.cgi/math/1568026331/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
371: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/20(金) 08:13:25.71 ID:ihE7M+Qz >>366 >Z/nZの要素は0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZのn個だけ >そこからZへの全射は逆立ちしても不可能wwwwwww (>>328より) 下記信州大 代数入門 (花木章秀先生)より ”同値類全体の集合は Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ で 0 + nZ={・・,-2n,-n,0,n,2n,・・} 1 + nZ={・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・} 以下略 だから Z/nZ = {{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}} ↓全射(内側の{}を外すだけ) Z ={・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・} 逆立ちしたら”全射”ができました(^^ (参考) http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro2013.pdf 代数学入門 花木 章秀 2013 年前期 (2013/04/01) (抜粋) P29 3.2 整数の合同によって定義される環 ある l ∈ Z が存在して a - b = nl となるとき a ≡ b (mod n) と書くことにする。 このときこの 関係は同値関係である。その a を含む同値類は a + nZ = {b ∈ Z | a ≡ b (mod n)} = {a + nl | l ∈ Z} であった。異なる同値類全体の集合は Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ} である。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1568026331/371
375: 132人目の素数さん [sage] 2019/09/20(金) 18:57:51.11 ID:DPgtgKl0 >>371 >Z/nZ = {{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}} > ↓全射(内側の{}を外すだけ) >Z ={・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・} >逆立ちしたら”全射”ができました これはヒドイ・・・ {}を外すだけじゃ写像にならないことも分からん馬鹿なのか? Q. Z/nZの元{・・,-2n,-n,0,n,2n,・・}はZのどの元に写像されるか? Zの元を1つ挙げよ(2つ以上あったら写像ではない!) http://rio2016.5ch.net/test/read.cgi/math/1568026331/375
383: 132人目の素数さん [] 2019/09/21(土) 00:33:01.47 ID:svbXdWN6 >>371 >だから >Z/nZ = {{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}} > ↓全射(内側の{}を外すだけ) >Z ={・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・} >逆立ちしたら”全射”ができました(^^ 外すだけってw 外したら全く違う集合になるんだがw キチガイ過ぎるw http://rio2016.5ch.net/test/read.cgi/math/1568026331/383
420: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/22(日) 07:26:02.98 ID:dCfcIyTY >>419 さらに追加 (>>371より引用開始) Z/nZ = {{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}} ↓全射(内側の{}を外すだけ) Z ={・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・} (引用終り) ここで、↓の上の集合で、外側の{}を外してみよう {・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・} ↓全射 {・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・} 要するに、 ↓の上側は、Zの部分集合で、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちになる ↓の下側は、Zそのもの つまり、↓の上側は、Zの部分集合の集まりで、そこに属する元から、Zの元に対する自然な対応(写像)が存在する そこで、外側の{}を復活させて、同値類の集合{0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}とすれば {{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}} ↓全射 {・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・} 要するに、Zの部分集合、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ達からのZに対する写像が、そのまま保存されていると考えればいいだけのことだ(^^ (参考) http://math.shinshu-u.ac.jp/~hanaki/edu/intro/intro2013.pdf 代数学入門 花木 章秀 信州大 2013 (抜粋) P29 3.2 整数の合同によって定義される環 ある l ∈ Z が存在して a - b = nl となるとき a ≡ b (mod n) と書くことにする。 このときこの関係は同値関係である。その a を含む同値類は a + nZ = {b ∈ Z | a ≡ b (mod n)} = {a + nl | l ∈ Z} であった。異なる同値類全体の集合は Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}である。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1568026331/420
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s