[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 http://rio2016.5ch.net/test/read.cgi/math/1568026331/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
289: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/18(水) 07:38:35.48 ID:3KrCaRK2 >>261 補足説明 (引用開始) https://elecello.com/doc/set/set0005.pdf 集合論ノート 0005 モストフスキ崩壊補題 (Mostowski Collapse Lemma) 近藤友祐 初稿: 2018/02/22 更新: 2019/09/16 (引用終り) ここに出てくる”推移的”、”set-like”、”整礎的”、”外延的”、”クラス”の補足、下記ご参照 (参考) https://ja.wikipedia.org/wiki/%E4%BA%8C%E9%A0%85%E9%96%A2%E4%BF%82 二項関係 (抜粋) 集合上の関係 集合 X 上の二項関係のいくつか重要なクラスとして、以下のようなものを挙げることができる: ・推移的 (transitive) X の各元 x, y, z について、x?R?y かつ y?R?z ならば x?R?z となるとき、関係 R は推移的であるという。 「先祖である」という関係は推移的である。実際、x が y の先祖で、y が z の先祖ならば、x は z の先祖である。 ・集合的 (set-like) 集合 X の任意の元 x に対して、y?R?x となるような y 全体の成すクラスが集合であるような関係は、集合的(あるいは集合状、集合様)であるという。 (これは真のクラス上の関係を認める場合でないと意味を持たない) 順序数全体の成すクラス上の通常の順序関係 "<" は集合的関係だが、その逆順序 ">" は集合的ではない。 ・整礎的 (well-founded) X の任意の空でない部分集合Aが極小元a(Aのどの元xもxRaとならない)を持つときR は整礎的であるという。 自然数上の大小関係"?"は整礎的である。正則性公理を仮定すると∈は任意の集合上で整礎的である。 ・外延的 (extensive) X の任意の元 x, y について、X の任意の元 z について zRx ⇔ zRy が成り立てば必ず x = y となるとき R は外延的であるという。 全順序は外延的である。∈は任意の集合上で外延的である。 反射的、対称的かつ推移的な関係は同値関係(あるいは等値関係)と呼ばれる。 反射的、反対称的かつ推移的な関係は半順序である。半順序が完全ならば全順序、単純順序、線型順序あるいは鎖などと呼ばれる[3]。 整礎的な線型順序は整列順序と呼ばれる。 ある関係が対称、推移的かつ連続的ならば必ず反射的である。 (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1568026331/289
290: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/18(水) 07:38:58.55 ID:3KrCaRK2 >>289 つづき https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%A9%E3%82%B9_(%E9%9B%86%E5%90%88%E8%AB%96) クラス (集合論) (抜粋) 公理的集合論におけるクラス ZFではクラスの概念を定式化することはできないので、クラスはメタ言語による同値な言明で置き換えることで扱うことになる。 例えば、AをZFを解釈する構造として、メタ言語での表現 {x| x=x} のAにおける解釈は、Aの議論領域に属する要素全ての集まり(つまり、Aにおける集合すべての集まり)である。 ゆえに、「全ての集合の成すクラス」を述語 x = xと(あるいはそれに同値な述語と)同一視することができる。 ZF集合論ではクラスを厳密に扱うことができないので、ZF の公理系をそのままクラスに関する言明に適用することはできない。 しかし、到達不能基数 K の存在を仮定すれば「それよりランクの小さな集合全体」は ZF のモデル(グロタンディーク宇宙)になり、その部分集合を「クラス」として考えることができる。 別な方法として、ノイマン-ベルナイス-ゲーデルの公理系 (NBG) を例に挙げよう。 この理論ではクラスは基本的な対象であり、集合は別のクラスの要素であるクラスとして定義される。 しかしながら、NBGにおける集合の存在公理は、クラスの上を亘るのではなく、集合の上を亘る量化のみに制限されている。これにより、NBG は ZF の保存拡大となる。 モース-ケリー集合論 (MK) は(NBG のように)真クラスを基礎的な対象として認めるものだが、集合の存在公理の中で全ての真クラスを走る量化をも許す。これにより、MKはZFやNBGより真に強い。 新基礎集合論 (NF) や半集合の理論のようなほかの集合論でも、「真の類」の概念は意味を成す(必ずしも全ての類は集合でない)が、集合性 (sethood) の判定規準が部分集合を作る操作の下で閉じていない。 例えば、普遍集合を備える任意の集合論は集合の部分類となるような真の類を持つ。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1568026331/290
292: 132人目の素数さん [sage] 2019/09/18(水) 07:41:13.99 ID:wvXbGob9 >>289 〇〇の一つのモストフスキwww でも、根本的にわかってないからダメダメだね http://rio2016.5ch.net/test/read.cgi/math/1568026331/292
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.039s