[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
83: 2019/09/13(金)06:47 ID:QEVZazxA(1/18) AAS
>>80
>∈−順序は、公理的集合論ZFCの目玉の重要キーワードでしょ?
いいやw
おまえ日本語が読めない馬鹿だろw
>フォン・ノイマン宇宙では、∈−順序が成り立ち、∈が推移律を保つ
>推移律:x∈y∈z で、ここでxはyの任意の元として、
>xに対し∀x∈zが成立→即y⊂z成立 かつ x⊂z成立
省16
84(2): 2019/09/13(金)06:48 ID:QEVZazxA(2/18) AAS
>>81
>∈−順序は、公理的集合論ZFCの目玉の重要キーワードでしょ?
いいやw
おまえ日本語が読めない馬鹿だろw
>フォン・ノイマン宇宙では、∈−順序が成り立ち、∈が推移律を保つ
>推移律:x∈y∈z で、ここでxはyの任意の元として、
>xに対し∀x∈zが成立→即y⊂z成立 かつ x⊂z成立
省16
85(1): 2019/09/13(金)06:53 ID:QEVZazxA(3/18) AAS
>>81
>数学者って人種は「おまいら高校の極限はゴマカシなんだ」みたいなのスキでね
>だから、もしベン図がゴマカシ(不正確と言ってもいい)だったら、
>きっとそういう人が出てくるはず
>「y∈zとしても、yの元で、zに含まれない元が存在するんだ。
> だから、ベン図に反例がある(あるいは描けない)」
>みたいなことをいう人がね
省9
86: 2019/09/13(金)06:56 ID:QEVZazxA(4/18) AAS
>>82
数学板名物、ニワトリ集合論www
>1)二つの集合A,Bで、A ∈ B → A ⊂ B
>2)二つの集合A,Bで、A ⊂ B → A ∈ B
>3)”A ∈ B → A ⊂ B” & ”A ⊂ B → A ∈ B”が成立つから、二つは同値
結論、集合=順序数
(ニワトリ曰く、「だって任意の集合は選択公理で整列可能だもん!」www)
87: 2019/09/13(金)06:58 ID:QEVZazxA(5/18) AAS
>>80
>おサルが二匹、踊ってくれるのか?
ニワトリ一羽、今日もトンデモ主張をコケコッコーw
さすが正規部分群を誤解する馬鹿だけのことはあるwww
88: 2019/09/13(金)07:14 ID:QEVZazxA(6/18) AAS
⊂に関しては、任意の集合X,Y,Zで
X⊂Y Y⊂Z ならば X⊂Z
がいえる
し・か・し
∈に関しては、任意の集合X,Y,Zで
X∈Y Y∈Z ならば X∈Z
とはいえない
省3
99(2): 2019/09/13(金)19:04 ID:QEVZazxA(7/18) AAS
>>89
>”フォン・ノイマン宇宙の全ての集合が推移的なわけ”ですよね
これはヒドイwww
答えは否
最も簡単な反例{{{}}}は既にしめした
理解できない?頭悪すぎだろ?
省11
100: 2019/09/13(金)19:04 ID:QEVZazxA(8/18) AAS
>>91
外部リンク[pdf]:www.math.tsukuba.ac.jp
>以下では,集合論の公理を仮定する.
>定義18. 1. x が推移的である(Trans(x)) とは,
>∀y∀z(z ∈ y ∈ x → z ∈ x)
>となることである.
ニワトリは日本語も正しく読めないのか?
省17
102(2): 2019/09/13(金)19:05 ID:QEVZazxA(9/18) AAS
ニワトリにはこっちのほうが分かりやすいか
外部リンク[pdf]:eurekagap.up.seesaa.net
「Definition 1.2.1.
集合 x が推移的(transitive)であるとは,
∀v(v ∈ x → v ⊆ x)
となることである.
これは x の元の元もまた x に属しているということである.」
省18
114: 2019/09/13(金)22:26 ID:QEVZazxA(10/18) AAS
>>105
>賢いニワトリ
そう思ってる時点でニワトリはバカw
>>102はバカでも分かると思って引用してやったまでだが
書いてあることは筑波大の坪井氏のpdfと大して変わらん
要するにニワトリは言葉の定義を公理と勘違いする
大馬鹿っぷりを演じたまで
省3
115: 2019/09/13(金)22:28 ID:QEVZazxA(11/18) AAS
>>106
>賢いニワトリ
そう思ってる時点でニワトリはバカw
>>112
ニワトリは、集合が推移的とか順序数であるとかいう用語の定義を
「すべての集合は推移的でありしたがって順序数である」
と読み違える正真正銘の馬鹿だから
省1
116: 2019/09/13(金)22:34 ID:QEVZazxA(12/18) AAS
集合論のどのテキストにも
「全ての集合は推移的である」とか
「全ての集合は順序数である」とか
いう嘘は書いてない
ニワトリは
「集合xが推移的であるとは・・・である」
「集合xが順序数であるとは・・・である」
省4
117: 2019/09/13(金)22:37 ID:QEVZazxA(13/18) AAS
ニワトリは{{{}}}が集合でないと思ってるらしいw
(なぜなら推移的でもないし順序数でもないからw)
しかも{{}}⊂{{{}}}だと思うほどの白痴である
{}は{{{}}}の要素でないのだから
{{}}⊂{{{}}}なわけがないのは
小学生でもわかることだが
なんせ人間どころか哺乳類ですらない
省1
121: 2019/09/13(金)23:32 ID:QEVZazxA(14/18) AAS
>>118
>フォン・ノイマン宇宙Vの中に、"推移的"ではない、つまり、反例があるとね
お前、アホだろw
フォン・ノイマン宇宙Vが推移的であるからといって
Vの任意の要素である集合が推移的だとはいえない
一番簡単な例{{{}}}を示してやっただろw
{}∈{{}}、{{}}∈{{{}}} だが、¬({}∈{{{}}})
省6
122: 2019/09/13(金)23:34 ID:QEVZazxA(15/18) AAS
>>118
>順序数は遺伝的に推移的な集合として定義される
しかし一般の集合は順序数どころか推移的集合でもないものがあるw
一番簡単な例{{{}}}を示してやっただろw
{}∈{{}}、{{}}∈{{{}}} だが、¬({}∈{{{}}})
これが理解できないようじゃ、数学は絶対無理だから諦めろw
123: 2019/09/13(金)23:39 ID:QEVZazxA(16/18) AAS
ああ、そうそう
フォン・ノイマン宇宙 Vや 構成可能宇宙 L は
遺伝的に推移的なクラスではない
(順序数全体のクラスOnは遺伝的に推移的なクラス)
125(1): 2019/09/13(金)23:41 ID:QEVZazxA(17/18) AAS
>>124
自分自身理解できない文章コピペして誤魔化さずに
{{{}}}が推移的でない集合であることを理解しようね
アホのニワトリ君wwwwwww
126(2): 2019/09/13(金)23:46 ID:QEVZazxA(18/18) AAS
{{{}}}は推移的でないから
{{}}∈{{{}}}だが、¬({{}}⊂{{{}}})である
ここまで簡単な例でニワトリの馬鹿主張を
木端微塵に打ち砕けるのは実にキモチがイイw
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.056s