[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
865: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)00:02 ID:OrOarbJT(1/12) AAS
>>863
オイラーのφ関数は、最初に1が出たあとは、全部偶数なんですね(^^;
外部リンク:ja.wikipedia.org
オイラーのφ関数
(抜粋)
オイラーのトーシェント関数(オイラーのトーシェントかんすう、英: Euler's totient function)とは、正の整数 n に対して、 n と互いに素である 1 以上 n 以下の自然数の個数 φ(n) を与える数論的関数 φ である。
1 から 20 までの値は以下の通りである。
省10
871(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)07:44 ID:OrOarbJT(2/12) AAS
>>866
ID:eqCH01Ubさん、どうも。スレ主です。
筆算でね(^^
出来ると思うよ、やらないけど
>>869
>面白いですね
面白いよね
省1
873(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)07:51 ID:OrOarbJT(3/12) AAS
>>859
>円分体の同型写像を具体的に構成せよ
めんどくさいやつだな
そうあせるな(^^
円分体は、草場公邦のP131にあるよ
そこから、手でコピータイプしても良いが
それでは、みなさん面白くないでしょw(^^;
省23
874(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)07:51 ID:OrOarbJT(4/12) AAS
>>873
つづき
これは、「5次以上の方程式には解の公式が存在しない」ということを証明するために編み出された理論であり、現代代数の先駆けとなったスゴモノである。(ちなみに誤解を最小限にするために言っておくと、何次方程式でも必ず複素数の解を持っている。
問題は、それをオートマチックに求める公式があるかどうかであり、5次以上にはそういう便利な公式がない、というのがガロアの定理なのである) 。
ぼくは、数学科のときは代数を専攻したので、ガロア理論は必須の道具であり、一生懸命勉強したのだけど、最終的に「身体でわかった!」というところにたどり着くことができなかった。
おおざっぱには捉えることはできたんだけど、機微が掴めておらず、少なくとも「アタリマエ」になるほどには理解していなかったのである。( そんなだから数学の道に挫折することになったのだけどね)。
ところが、最近になってこの『ガロワと方程式』を読んで、急に視界が開け、「アタリマエ」とまではいわないけど、「よくできた自然な理論だなあ」というところまで理解できるようになってしまったのだ。
省3
875(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)07:54 ID:OrOarbJT(5/12) AAS
>>874
つづき
(Brent Everitt先生、これお薦めです。カラーの絵が豊富で分り易い。(練習問題の解答が無くなっているね(^^ ))
外部リンク:arxiv.org
Galois Theory - a first course
Brent Everitt
(Submitted on 12 Apr 2018)
省22
876: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)07:56 ID:OrOarbJT(6/12) AAS
>>875 文字化け訂正
x^5 ? 2
↓
x^5 - 2
などね
-の記号が、多分コードが違うので、目では見分けが付かず、この板では文字化けするんだ(^^;
891(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)20:48 ID:OrOarbJT(7/12) AAS
>>886
ID:z0qt+ZiN さん、どうも。スレ主です。
>演習で「位数200以下の単純群をすべて挙げよ」という問題があった
>「168の時はアレだけに限られる」が難しくて、次の週までに解けなかった思い出
えー
明治大 蔵野研では、位数30までで、学部卒業研究だとか
それが、演習で「位数200以下の単純群をすべて挙げよ」か
省1
892: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)21:36 ID:OrOarbJT(8/12) AAS
>>891
>「168の時はアレだけに限られる」
これか
外部リンク:ja.wikipedia.org
168
(抜粋)
・168 は合成数であり、約数は 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84 と 168 である。
省26
893(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)21:42 ID:OrOarbJT(9/12) AAS
>>887
そうあせるな
おれは楽しんでいるんだ
円分体ねー
深いねー
円分体の深みを再認識しているんだよ
あんたの質問の答え
省3
894(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)21:57 ID:OrOarbJT(10/12) AAS
>>890
(引用開始)
「S_3, S_4, S_5 の部分群の分類」のところで
S_5の位数20の部分群も出てるぞ
(12345), (2354) が生成群だから
部分群に位数5と位数4の巡回群がある
(引用終り)
省16
900(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)23:29 ID:OrOarbJT(11/12) AAS
>>889
(引用開始)
「Q(ζn)/Qの自己同型をσとすると、
σ(ζn)は円分多項式Φn(x)=0の解となりますので、
σ(ζn)=ζn^i (i∈(Z/nZ)×)と表せます。
逆にi∈(Z/nZ)×に対してσiをσi(ζn)=ζn^iとすると
σiはQ(ζn)/Qの自己同型を導くことが分かります。」
省13
901(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)23:51 ID:OrOarbJT(12/12) AAS
>>896-897
なにを狼狽して誤魔化そうとしているんだ??w(^^;
>>890より
(引用開始)
「S_3, S_4, S_5 の部分群の分類」のところで
S_5の位数20の部分群も出てるぞ
(12345), (2354) が生成群だから
省30
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.052s