[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 http://rio2016.5ch.net/test/read.cgi/math/1568026331/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
24: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 07:01:22.38 ID:IlUCyPH9 >>21-23 おいおい、おサル、逃げるなよ もっと、踊っておくれ by サル回しのスレ主(^^ いつでも、戻って来いよ、相手してやるからw(^^; http://rio2016.5ch.net/test/read.cgi/math/1568026331/24
29: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 07:40:18.27 ID:IlUCyPH9 ありがとう、おサル もっと、踊っておくれ by サル回しのスレ主(^^ http://rio2016.5ch.net/test/read.cgi/math/1568026331/29
30: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 07:43:22.83 ID:IlUCyPH9 >>21 うん、それね、おれ間違っているね(^^; スレ76 https://rio2016.5ch.net/test/read.cgi/math/1566715025/845 引用 >>842 >Ω ⊂ R^N と Ω ∈ R^N はまったく別ものである 「まったく別もの」ではない 詳しくは、>>832の「ZFC公理系について:その1(及び2)」を読んでみな 簡単に書くと 1)二つの集合A,Bで、A ∈ B → A ⊂ B ∵ 集合Aの全ての元aは、集合Bの元だから 2)二つの集合A,Bで、A ⊂ B → A ∈ B ∵ 集合B中で、集合Aの全ての元aを集めて、内部に集合Aを構成できるから 3)”A ∈ B → A ⊂ B” & ”A ⊂ B → A ∈ B”が成立つから、二つは同値 (引用終り) 1)まず、上記2)は、スレ76 https://rio2016.5ch.net/test/read.cgi/math/1566715025/865 に自分で書いたように、正則性公理から反例 x not∈ x (x ⊂ xであるにも関わらす)が出るから間違い (それ以外にも、反例はあるな。後述) 2)では、上記1)は、どうだろうか? 下記の筑波大 坪井先生の数理論理学IIをベースに考えてみよう P5 公理的集合論「x ∈ y の直観的な意味は,もちろん元x が集合y に属することであるが,x も一つの集合だと考える.」 ”元x も一つの集合だと考える”とすると、x ∈ y → x ⊂ y だろうと しかし、ZFC公理系から導けると思って、トライしたが、残念ながらできなかった(^^; (そういう文典も探したが、見つけられなかった) 3)しかし、我々の通常接する素朴集合論に近い議論では、”x ∈ y → x ⊂ y ”を認めた方が良いという結論に至った 4)その一つの理由が、P11の「1.3 順序数」の、 「素朴集合論では同値類 X/〜 を(一つの)順序数とよぶ. しかし整列順序の全体は(大きすぎて)集合にはならない.X と順序同型 なものたち全体に限っても集合ではない.したがって,素朴集合論における通 常の構成法は厳密な議論には相応しくないので,別の構成法を考えなくてはならない. 基本的な考え方は,∈ がその上で整列順序になる集合たちのクラスを上手に 定義して,それに属する集合を順序数として定義すること」 (要するに、∈−順序な) つづく http://rio2016.5ch.net/test/read.cgi/math/1568026331/30
31: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 07:43:52.73 ID:IlUCyPH9 >>30 つづき 5)∈−順序は、推移的なので、xの任意の元 u ∈ x が成立つと、x ∈ y → u ∈ y成立(∵推移性より) だから、この場合は”x ∈ y → x ⊂ y ”成立 6)で、我々が通常扱う集合は、超限帰納法も適用可の場合が多く、∈−順序が成立つとして良い ∈−順序が成立つ場合は、”x ∈ y → x ⊂ y ”成立 7)「まったく別もの」ではないが、別もの 8)なお、”x ∈ y → x ⊂ y ”を認めないと、素朴集合論のベン図に反例が出る つまり、x ∈ yであるにも関わらず、xのある元 u ∈ x で、u not∈ y となると、素朴集合論のベン図が描けないw(^^; (∈−順序を仮定しないとどうなるか? 上記のように、分からんかった(^^; 坪井先生の上記、”整列順序の全体は(大きすぎて)集合にはならない”のような記述もあるので、 自分の考えが、”公理的集合論”の範囲内か範囲外かが、判断できないので、ギブアップします) (参考) http://www.math.tsukuba.ac.jp/~tsuboi/ Akito Tsuboi 筑波大 http://www.math.tsukuba.ac.jp/~tsuboi/under.html 学群関係 http://www.math.tsukuba.ac.jp/~tsuboi/und/14logic3.pdf 数理論理学II Akito Tsuboi 筑波大 (追加参考) https://www.practmath.com/ordinal-number/ 実用的な数学を 2019年4月18日 投稿者: TAKAN 順序数 Ordinal Number (抜粋) ともあれそんな『比較』ですが、 なにでやるかというと、「帰属関係 ∈ 」を使ってやります。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1568026331/31
33: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 07:49:58.02 ID:IlUCyPH9 >>30 補足 >(それ以外にも、反例はあるな。後述) ・例えば、自然数Nで、偶数の集合を、2Nとすると 2N ⊂ N が成立つ ・しかし、2N ∈ N とすると、2Nは可算無限集合なので、Nの元は有限順序数のみの定義に反する (^^; http://rio2016.5ch.net/test/read.cgi/math/1568026331/33
34: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 07:53:09.60 ID:IlUCyPH9 >>32 >x ∈ y → x ⊂ y の初等的反例を示してるぞ (>>31より) 8)なお、”x ∈ y → x ⊂ y ”を認めないと、素朴集合論のベン図に反例が出る つまり、x ∈ yであるにも関わらず、xのある元 u ∈ x で、u not∈ y となると、素朴集合論のベン図が描けないw(^^; (引用終り) (^^; http://rio2016.5ch.net/test/read.cgi/math/1568026331/34
51: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 20:41:05.45 ID:IlUCyPH9 おサルご苦労 一匹だけ戻ってきたか 一番低脳なのが さあ、踊ってくれ by サル回しのスレ主より w(^^; http://rio2016.5ch.net/test/read.cgi/math/1568026331/51
52: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 20:45:44.41 ID:IlUCyPH9 (>>30-31) 筑波大 坪井先生の数理論理学IIをベースに考えてみよう P5 公理的集合論「x ∈ y の直観的な意味は,もちろん元x が集合y に属することであるが,x も一つの集合だと考える.」 なので、元xを、ベン図の点で表わす必要ないよね おサルのベン図はしらんけどなw(^^; アホなおサルw (参考) http://www.math.tsukuba.ac.jp/~tsuboi/und/14logic3.pdf 数理論理学II Akito Tsuboi 筑波大 http://rio2016.5ch.net/test/read.cgi/math/1568026331/52
55: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/09/11(水) 21:00:56.13 ID:IlUCyPH9 (>>30-31) > 5)∈−順序は、推移的なので、xの任意の元 u ∈ x が成立つと、x ∈ y → u ∈ y成立(∵推移性より) > だから、この場合は”x ∈ y → x ⊂ y ”成立 ∈−順序は、推移的なので、 u ∈ x ∈ y なら 三重丸を描けば良い 一番内側がu、中間がx、一番外がy それをベン図で解釈すれば、 u ⊂ x ⊂ y それで、xの元である集合uにおいて、 その元が1点集合たち u1,u2,・・・,un ∈uだったとすれば 一番内側の丸のuの中に、u1,u2,・・・,un達を描く。それは1点で表現しても良い(^^ ベン図の包含関係から u1,u2,・・・,un ∈xであり u1,u2,・・・,un ∈yである これ即ち、∈−順序の推移性そのものでしょ(^^; おサル、しっかり踊れよ by サル回しのスレ主より w(^^; http://rio2016.5ch.net/test/read.cgi/math/1568026331/55
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s