[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
104: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/13(金)21:42:05.47 ID:Ct8Lh9wH(5/15) AAS
>>103
URLがNGワードとかで通らなかったので、全角に直した
まあ、キーワード検索で飛んでくれ(^^;
173(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)23:36:33.47 ID:QdZ5TU5n(18/19) AAS
>>172
つづき
アトムと集合
以下、素朴集合論とはユーザーフレンドリーなZFC集合論の意味だとします。
素朴集合論には、集合でないモノがあります。例えば、整数3は集合でしょうか? 普通の感覚では、3は集合ではありません。しかし、ZFC集合論では全てのモノが集合です。もちろん、整数3もZFC集合論における集合です。
要素を持たないモノをアトム(atom; 原子)と呼びます。素朴集合論で、3はアトムです。ZFC集合論では、3はアトムではありません。このギャップを埋める方法は、割とイイカゲンで、いくつかの集合を特定して、それらの集合の要素は「アトムと見なそう」と約束するだけです。
アトムを認めると、何がアトムで何がアトムでないかイチイチ決めなくてはいけないので面倒になります。ですが、我々がプログラミング言語やデータベースの話をするときは、スカラー型、複合データ型、コレクション型のような区別をするので、アトムを認めたほうがよいでしょう。
省8
351: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)23:17:09.47 ID:MSw7Rbq1(12/14) AAS
>>350
つづき
忘却関手をイメージすると、Grp の対象である群の台集合をそのまま Set の対象とし、Grp の射である準同型写像をそのまま Set の射に写す。集合の圏では演算は定義されていないので f(xy) = f(x)f(y) という等式は意味がなくなってしまう。
つまり、忘却関手とは群の圏から演算を取り去ってしまって、そのまま集合の圏の部分圏に写しだしたものと考えると良い。忘却関手の像の射の集合は集合の圏の射の集合の部分集合になっている。
したがって、忘却関手のイメージとは、群の圏を、集合の圏の部分圏へ写す関手と考える事ができる。
一方自由群は集合から作る事ができる。集合の圏の対象である文字集合をその上の自由群に対応させ、文字集合間の写像を対応する自由群間の準同型写像に対応させる関手(自由関手)を考えると、これは忘却関手とは反対方向の Set -> Grp の関手になる。
自由関手は忘却関手の左随伴である。したがって、自由関手と忘却関手の関係が分かれば、随伴の実例のひとつを理解できることになる。
省12
383: 2019/09/21(土)00:33:01.47 ID:svbXdWN6(3/5) AAS
>>371
>だから
>Z/nZ = {{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}}
> ↓全射(内側の{}を外すだけ)
>Z ={・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・}
>逆立ちしたら”全射”ができました(^^
外すだけってw 外したら全く違う集合になるんだがw
省1
391(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/21(土)07:36:06.47 ID:RSxZzkRi(2/13) AAS
>>390
つづき
外部リンク[pdf]:math.shinshu-u.ac.jp
代数学入門 花木 章秀 信州大 2013
(抜粋)
P29
3.2 整数の合同によって定義される環
省31
392(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/21(土)07:49:35.47 ID:RSxZzkRi(3/13) AAS
>>391 補足
(引用開始)
2 を法とする剰余類環
整数を 2 で割った剰余は 0 か 1 となるから、Z/2Z = {0, 1} であり、これはすべての剰余類環のなかで位数最小のものである。また、2 は素数なのでこれは位数最小の有限体 F2 とも一致する。
(引用終り)
”Z/2Z = {0, 1}”の”=”は、環としての「同一視」ですね
これを完全に「同一」とすることはできない
省1
533(4): 2019/09/23(月)22:34:37.47 ID:hzAaw1bL(2/6) AAS
>>527
nZは、無限集合
それを1個として、Z/nZはn個とする
そこまでは、自分で書いている
それで、有限集合とするならば、
Z自身1個の集合だから、有限集合だ
Z'={Z}は、1個の元からなる
省2
710: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/04(金)13:18:13.47 ID:DXkMGtcj(3/3) AAS
外部リンク:www.nikkei.com
車大手、中途採用広がる トヨタは総合職の年5割に
【イブニングスクープ】
2019/10/2 18:00日本経済新聞 電子版
(抜粋)
自動車業界で自動運転など次世代技術に対応するため、中途採用を拡大する動きが広がってきた。
トヨタ自動車は2019年度に総合職の採用に占める中途採用の割合を18年度の1割から3割に引き上げ、中長期的に5割とする。
省2
785(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/11(金)08:17:28.47 ID:aKfhohl9(5/6) AAS
>>781
下記、8.4 有理式と置換の
”系 8.21. f, φ を n 変数有理式とする.f を変えない Sn の置換全体を G とする:
G = {σ ∈ Sn | σf = f}. G の置換を φ に作用させて得られる異なる式全体を
φ = φ1, φ2, . . . , φl とする.このとき,φ1, φ2, . . . , φl の対称式は f の有理式に表わさ
れる.”
が基本になるのだが、詳しく説明されない場合が多い
省34
900(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)23:29:32.47 ID:OrOarbJT(11/12) AAS
>>889
(引用開始)
「Q(ζn)/Qの自己同型をσとすると、
σ(ζn)は円分多項式Φn(x)=0の解となりますので、
σ(ζn)=ζn^i (i∈(Z/nZ)×)と表せます。
逆にi∈(Z/nZ)×に対してσiをσi(ζn)=ζn^iとすると
σiはQ(ζn)/Qの自己同型を導くことが分かります。」
省13
981: 2019/10/18(金)16:40:00.47 ID:et14HmJl(4/7) AAS
複素平面はリーマン面。
>>976
>ガロアと名の付く数学用語一覧
その wiki を見たが、余りないようだな。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.053s