[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
163
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)22:33 ID:QdZ5TU5n(12/19) AAS
>>140 >>142-143
(引用開始)
フォン・ノイマン宇宙
集合Xに対してP(X)でXのべき集合を表す
V0={}
V1=P(V0)={{}}
V2=P(V1)={{},{{}}}
省36
164
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)22:34 ID:QdZ5TU5n(13/19) AAS
>>163
つづき

外部リンク:www.sci.shizuoka.ac.jp 数学基礎論サマースクール 選択公理と連続体仮説
外部リンク[pdf]:www.sci.shizuoka.ac.jp
公理的集合論の基礎 酒井 拓史 神戸大学 2019 年 数学基礎論サマースクール
(抜粋)
P3
省20
165
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)22:37 ID:QdZ5TU5n(14/19) AAS
>>164 文字化け訂正

∈| X := {?x; y? ∈ X × X | x ∈ y}
 ↓
∈| X := {(x; y?)∈ X × X | x ∈ y}

なお
(再度強調:「基礎公理により,すべての集合X に対して」ですよ(^^; )
整礎的関係
省5
166: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)22:39 ID:QdZ5TU5n(15/19) AAS
>>165
>基礎公理により,すべての集合X に対して

ああ、また文字化けしたか
まあ、原文PDF 外部リンク[pdf]:www.sci.shizuoka.ac.jp
公理的集合論の基礎 酒井 拓史 神戸大学 2019 年 数学基礎論サマースクール
見て下さい
よほどその方が見やすい(^^;
167: 2019/09/14(土)22:40 ID:VYIPOabR(23/30) AAS
>>163-165
いくら書いても
{}∈{{{}}}
なんて正当化できませんから

残念!!!
168: 2019/09/14(土)22:42 ID:VYIPOabR(24/30) AAS
ニワトリ集合論w

{}∈{{{}}}

ギャハハハハハハwwwwwww
169
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)23:14 ID:QdZ5TU5n(16/19) AAS
>>163 追加
(下記、藤田先生)
「要素所属関係∈」
とか
「モストフスキの崩壊定理により, 外延性公理の整礎的モデルは推移的集合の∈-構造と同型になる」
とか
公理的集合論では、「要素所属関係∈」は、”ヒトの集合論の肝”ですよ(^^;
省24
170: 2019/09/14(土)23:28 ID:VYIPOabR(25/30) AAS
>>169
藤田氏もツイッターやってるから聞いてみな
「∈は推移的だから{}∈{{{}}}ですよね」ってw
・・・速攻で否定されるぞw
Twitterリンク:fujitapiroc1964
Twitterリンク:5chan_nel (5ch newer account)
171
(3): 2019/09/14(土)23:35 ID:igft4myA(4/5) AAS
{}∈{{{}}} を仮定する。
右辺の元は {{}} のみであるから {}={{}} が成立。
よって、{}={{}}={{{}}}=・・・が成立。※

ところで自然数全体の集合Nを
>以上の構成は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。
>例えば、0 := {}, suc(a) := {a} と定義したならば、
>0 := {}
省8
172
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)23:36 ID:QdZ5TU5n(17/19) AAS
>>169
いまのおサルとニワトリの推移的集合論論争に、参考になりそうなのが
下記の檜山正幸さんの「現場の集合論としての有界素朴集合論」だろうね
おサルには、ちょっと難しいだろうがw(^^;

外部リンク:m-hiyama.hatenablog.com/entry/20171024/1508830602
檜山正幸のキマイラ飼育記 (はてなBlog)
2017-10-24
省17
173
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)23:36 ID:QdZ5TU5n(18/19) AAS
>>172
つづき

アトムと集合
以下、素朴集合論とはユーザーフレンドリーなZFC集合論の意味だとします。

素朴集合論には、集合でないモノがあります。例えば、整数3は集合でしょうか? 普通の感覚では、3は集合ではありません。しかし、ZFC集合論では全てのモノが集合です。もちろん、整数3もZFC集合論における集合です。

要素を持たないモノをアトム(atom; 原子)と呼びます。素朴集合論で、3はアトムです。ZFC集合論では、3はアトムではありません。このギャップを埋める方法は、割とイイカゲンで、いくつかの集合を特定して、それらの集合の要素は「アトムと見なそう」と約束するだけです。

アトムを認めると、何がアトムで何がアトムでないかイチイチ決めなくてはいけないので面倒になります。ですが、我々がプログラミング言語やデータベースの話をするときは、スカラー型、複合データ型、コレクション型のような区別をするので、アトムを認めたほうがよいでしょう。
省8
174
(1): 2019/09/14(土)23:40 ID:VYIPOabR(26/30) AAS
>>172
誤 おサルとニワトリの推移的集合論論争
正 人間様からニワトリへの集合論の初歩の指導

>>171
>{}∈{{{}}} を仮定する。
>右辺の元は {{}} のみであるから {}={{}} が成立。
>よって、{}={{}}={{{}}}=・・・が成立。※
省1
175
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/14(土)23:40 ID:QdZ5TU5n(19/19) AAS
>>171
>{}∈{{{}}} を仮定する。
>右辺の元は {{}} のみであるから {}={{}} が成立。

意味分からん
「{}={{}} が成立」?
その式自身が矛盾だろ?w(^^;
176
(1): 2019/09/14(土)23:45 ID:igft4myA(5/5) AAS
>>175
{}∈{{{}}} を仮定すると {}={{}} にならざるを得ないんですよ
それが不満なら仮定 {}∈{{{}}} が偽であることを認めるしかないですね(^^
177: 2019/09/14(土)23:45 ID:VYIPOabR(27/30) AAS
>>173-174
勉強嫌いのニワトリは集合をアトムの集まりとしか認識してないだろうなw
自然数もアトム 実数もアトム

そのレベルだとそもそも∈の推移性自体が意味をもたないw
なぜならx∈Sとしたとき、xは集合でなくアトムだから y∈xなんてことは想定外w

それじゃトンデモになるわけだな
公理的集合論に関する無理解度は
省2
178: 2019/09/14(土)23:48 ID:VYIPOabR(28/30) AAS
>>176
>{}∈{{{}}} を仮定すると {}={{}} にならざるを得ないんですよ

その通り

{{{}}}の要素は{{}}だけだから
もし{}が要素なら{{}}と同じだ
ということになるw

>>175
省2
179: 2019/09/14(土)23:50 ID:VYIPOabR(29/30) AAS
ニワトリ語講座w

1.「意味わからん」
  「勘弁して、ボクはアタマ悪いんです」の意w

2.「笑える」
  「ごめんなさい、もう許して」の意w
180
(1): 2019/09/14(土)23:55 ID:VYIPOabR(30/30) AAS
ところで「分からない問題はここに書いてね456」にて
推移的集合に関する問題を出題してみたところ
2chスレ:math
速攻で正しい回答が返ってきました
2chスレ:math

これが数学板の実力ですよw
181
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)00:02 ID:NNU+uf1a(1/16) AAS
>>175 補足
(引用開始)
>>171
>{}∈{{{}}} を仮定する。
>右辺の元は {{}} のみであるから {}={{}} が成立。
(引用終り)

檜山正幸さんにならって、”現場の素朴集合論”でのたとえ話をすると
省14
182
(1): 2019/09/15(日)00:11 ID:g2F0dADR(1/20) AAS
>>181
>袋Xの中にも、確かにノコギリは入っている
>但し、大工道具セットの箱Aの中ではあるが
>この場合に、「ノコギリ∈袋X」だよというのが、
>ニワトリの主張です(多分ヒトも)

悪いがヒトはニワトリほど馬鹿じゃないよ

X={A,B}
省9
183: 2019/09/15(日)00:15 ID:g2F0dADR(2/20) AAS
ニワトリの考え方では、ZFCの集合は全部空集合に等しくなるw
なぜならZFCに集合でないアトムは存在しないから

{}がどんな風に重なり合っていても、
{}の中にアトムがないから
ニワトリにとって中身は空っぽであるw
184: 2019/09/15(日)00:17 ID:g2F0dADR(3/20) AAS
今夜はニワトリの丸焼きでパーティだな

祭りだ!祭りだ!!祭りだ!!!祭りだ!!!!
動画リンク[YouTube]
185: 2019/09/15(日)00:25 ID:g2F0dADR(4/20) AAS
ニワトリとヒトの差は、指原莉乃と中元すず香くらい違う
っていおうとおもったけど
今見たらさしこ結構歌上手いじゃんw
ってことでこの喩えは撤回ねw

指原莉乃
動画リンク[YouTube]
186: 2019/09/15(日)00:33 ID:g2F0dADR(5/20) AAS
ま、しかし「ゆび祭り」にBABYMETALを呼ばなかったのは
さしこ一生の不覚だろうw

動画リンク[YouTube]
187
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)07:21 ID:NNU+uf1a(2/16) AAS
>>180
(引用開始)
ところで「分からない問題はここに書いてね456」にて
推移的集合に関する問題を出題してみたところ
2chスレ:math
速攻で正しい回答が返ってきました
2chスレ:math
省4
188
(9): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)07:31 ID:NNU+uf1a(3/16) AAS
さて
>>182
>XとYは集合として異なります

ええ、>>181で「4)袋X≠袋Y です(素朴集合論として)」と自分でも書いていますよ
理解できないようなので、もう少し例を増やします(>>181の”・・・”は省きます)

1)素朴集合の元(要素)として
・大工道具セットの箱A(ノコギリ、金槌、ドライバー)
省30
189
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)07:34 ID:NNU+uf1a(4/16) AAS
>>188 タイポ訂正

・上記4)の「ノコギリ∈Z」のように考える方が、正解なのです
 ↓
・上記5)の「ノコギリ∈Z」のように考える方が、正解なのです

分かると思うが(^^;
190
(1): 2019/09/15(日)08:02 ID:g2F0dADR(6/20) AAS
>>188
>5)ノコギリが集合だと考えると
> ・ノコギリ⊂{ノコギリ} (包含関係)
>よって
> ・ノコギリ⊂Z
> つまり、ノコギリはZに包含されているのです

これはヒドイw
省24
191: 2019/09/15(日)08:06 ID:g2F0dADR(7/20) AAS
>>188
>・⊂と∈との違いは・・・

⊂は推移的だが、∈は一般的に推移的ではない、ということ

ということで根本的に似てない
192: 2019/09/15(日)08:08 ID:g2F0dADR(8/20) AAS
蛇足
>>189
>分かると思うが

ニワトリの言い訳根性が実に卑しい
193
(9): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)08:12 ID:NNU+uf1a(5/16) AAS
>>188 追加
(引用開始)
・⊂と∈とは、よく似ているってこと
・⊂と∈との違いは、∈は集合の元(要素)に適用されるが、⊂は広く集合の元(要素)以外にも適用されること
・ところが、公理的集合論では、元(要素)もまた集合なので、⊂と∈との敷居は素朴集合論より低いのです
・上記5)の「ノコギリ∈Z」のように考える方が、正解なのです
(引用終り)
省24
194
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)08:15 ID:NNU+uf1a(6/16) AAS
>>190
>要素をたどっていく操作は必ず有限回でおわる

要素をたどっていく操作は、∈関係によります
QED
(^^;
195
(1): 2019/09/15(日)08:23 ID:qglvvszf(1/2) AAS
>>193
偶数の集合 = {2} = {{1}}

1∈{1}⊂偶数の集合

スレ主によると
1∈偶数の集合
196
(1): 2019/09/15(日)08:26 ID:g2F0dADR(9/20) AAS
>>193
>1)自然数の集合N、偶数の集合N2、奇数の集合Nodd
>2)集合N’={N2,Nodd} (偶数の集合と奇数の集合とを入れた集合)
>3)s={2,4,6}という集合は、NとN’両方に含まれます(部分集合)

これまたヒドイw

s⊂N s⊂N2 だが、s⊂N'ではない

>5) {2}は、NとN’両方に含まれます(両方の部分集合)
省20
197: 2019/09/15(日)08:27 ID:g2F0dADR(10/20) AAS
>>194
>要素をたどっていく操作は、∈関係によります

∈関係が推移的である必要はありません
R.I.P
198
(1): 2019/09/15(日)08:32 ID:g2F0dADR(11/20) AAS
>>193
追伸

>集合N’={N2,Nodd} (偶数の集合と奇数の集合とを入れた集合)

ニワトリはN2⊂N’だと思い込んでるだろうけど、も・ち・ろ・ん、違うよw
199
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)10:03 ID:NNU+uf1a(7/16) AAS
>>113より)
外部リンク:researchmap.jp
フォン・ノイマンと公理的集合論 渕野昌 28. Mai 2017
以下の文章は、 「現代思想」2013 年8月増刊号に,渕野昌,フォン・ノイマンと公理的集合論(2013), 208?223. として収録された論説である。
雑投稿/校正後の加筆訂正も含まれている。
誌掲載版では紙数の制限などのために削除した部分も再収録した。

上記を読むのに、下記が大変役に立ちました(^^
省29
200
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)10:04 ID:NNU+uf1a(8/16) AAS
>>199
つづき

この問題に対して、おそらく数学の「歴史」は、今までのところ、あまりはかばかしい達成をあげていないんじゃないのかと思っている。
ただ、一つ。まあ、昔から知られている結果ではあるが、おもしろいアプローチが知られている。それが、

カテゴリー(圏論)
である。

集合論の圏論的な公理のうち評判のよいものを一つ選ぶと、形式ばらない要約は次のようになる。
省11
201
(1): 2019/09/15(日)10:11 ID:IzOPqE/a(1/10) AAS
>>187
往生際が悪いなこのサルはw
202
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)10:20 ID:NNU+uf1a(9/16) AAS
>>195
(引用開始)
偶数の集合 = {2} = {{1}}
1∈{1}⊂偶数の集合
スレ主によると
1∈偶数の集合
(引用終り)
省29
203
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)10:24 ID:NNU+uf1a(10/16) AAS
>>201
なんだw
「分からない問題はここに書いてね456」
>>187ご参照)
に間違った回答を書いたのは
もう一匹だったか
それって、なれ合いのサクラ回答じゃんか!w(^^;
204
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)10:31 ID:NNU+uf1a(11/16) AAS
>>200
>集合論ではない(「集合」と「属する」という「無定義用語」によって、公理系を記述していない。あくまで「圏論」流に、「対象Aから対象Bへの射」という「無定義用語」しか本質的に使っていない。

”「集合」と「属する」という「無定義用語」によって”か
なるほど
「属する」(∈)は、「無定義用語」(未定義用語)だったか
確かに、公理を記述するとき、どうしても、「無定義用語」(未定義用語)は避けられない
それは、少ない方がいいのだが
省11
205
(2): 2019/09/15(日)10:35 ID:IzOPqE/a(2/10) AAS
>>188
>5)もしノコギリが集合だと考えると
>・ノコギリ⊂{ノコギリ}⊂Z (包含関係)
大間違いw
ノコギリ⊂{ノコギリ} を仮定すると
包含関係の定義により、∀x∈ノコギリ⇒x∈{ノコギリ} でなければならないが、
{ノコギリ} の元はノコギリのみだから、ノコギリ={ノコギリ} であることが必要。
省3
206
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)10:39 ID:NNU+uf1a(12/16) AAS
>>198
>>集合N’={N2,Nodd} (偶数の集合と奇数の集合とを入れた集合)
>ニワトリはN2⊂N’だと思い込んでるだろうけど、も・ち・ろ・ん、違うよw


>>193より)
集合N’={N2,Nodd} (偶数の集合と奇数の集合とを入れた集合)
(引用終り)
省3
207
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)11:00 ID:NNU+uf1a(13/16) AAS
>>205
(引用開始)
大間違いw
ノコギリ⊂{ノコギリ} を仮定すると
包含関係の定義により、∀x∈ノコギリ⇒x∈{ノコギリ} でなければならないが、
{ノコギリ} の元はノコギリのみだから、ノコギリ={ノコギリ} であることが必要。
これはサルの大好きな正則性公理から直ちに否定されるw
省23
208
(1): 2019/09/15(日)11:02 ID:qglvvszf(2/2) AAS
>>206
> 集合N'は二つの元から成る有限集合か?

外部リンク[pdf]:www.people.vcu.edu

p.13 Example 1.3, p.15 Example 1.4などを見て
Exercises for Section 1.3, 1.4あたりを解いてみれば?
209: 2019/09/15(日)11:12 ID:IzOPqE/a(3/10) AAS
>>193
>例えば、s={2,4,6}という集合は、NとN’両方に含まれます(部分集合)
大間違いw
N' の元は N2 と Nodd のみであり、そのどちらも 2 ではないから 2∈N' ではない。
よって包含関係の定義から s⊂N' が否定される。

恥を上塗る前に近所の中学生に教えてもらえと言ってるのにまだ分からんか?
210: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)11:14 ID:NNU+uf1a(14/16) AAS
>>204 補足

外部リンク:researchmap.jp
酒井拓史 サカイ ヒロシ

経歴
2013年11月 - 現在
神戸大学 システム情報学研究科 准教授
2010年10月 - 2013年10月
省3
211
(1): 2019/09/15(日)11:16 ID:IzOPqE/a(4/10) AAS
>>207
>いや、そもそも、素朴集合論では、「ノコギリ」はアトム(元)であって、
>集合同士に適用する⊂(包含関係)は適用できない
ちょw
>5)もしノコギリが集合だと考えると
と、>>188で言ったのはおまえなんだがw

サル発狂w
212
(1): 2019/09/15(日)11:18 ID:IzOPqE/a(5/10) AAS
サルは頭が悪く勉強も嫌いだが、さらに自分で言ったことを次の瞬間には全否定するという発狂ぶりw
こんなキチガイ見たこと無いw
数学どころじゃないw
213
(1): 2019/09/15(日)11:26 ID:IzOPqE/a(6/10) AAS
サルは気が狂ってるので精神病院で治療してもらえ
自分で「ノコギリを集合とする」と言っておきながら次の瞬間には「ノコギリは集合でない」とか、いくらなんでもキチガイ過ぎるだろ
214
(1): 2019/09/15(日)11:35 ID:IzOPqE/a(7/10) AAS
>>203
サルは糖質も併発してるらしい
専門医を受診せよ
215
(1): 2019/09/15(日)11:42 ID:IzOPqE/a(8/10) AAS
>>202
>s⊂N2⊂N’なので
N'の元はN2とNoddのみだから、N2のどの元もN'の元ではない。
よって N2⊂N’ は間違い。

サルはもう発言しなくていいから
精神病の治療が先
216
(1): 2019/09/15(日)11:52 ID:IzOPqE/a(9/10) AAS
いやー 今までも「∞に近い巨大数」とか数々の名言を残してきたけど、さすがに今回は酷過ぎるね
知識が無い(これは許せる)
知能が無い(これはヤバい)
正常な精神が無い(オワッテル)
217: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)15:03 ID:NNU+uf1a(15/16) AAS
>>208
(引用開始)
> 集合N'は二つの元から成る有限集合か?
外部リンク[pdf]:www.people.vcu.edu
p.13 Example 1.3, p.15 Example 1.4などを見て
Exercises for Section 1.3, 1.4あたりを解いてみれば?
(引用終)
省43
218: 2019/09/15(日)15:20 ID:IzOPqE/a(10/10) AAS
>>206
>集合N’の正規の元は、たった二つ
>では、集合N’は二つの元から成る有限集合か?
>無限集合を内包していると考えるべしだろ?(^^
サルは書かれている定義を字義通りに解釈するということができない。
書かれていないことまで勝手に付け足して自分勝手な解釈をする。
そうして独善主張に走る。
省1
219: 2019/09/15(日)15:33 ID:g2F0dADR(12/20) AAS
>>202
>s⊂N2⊂N’なので

ニワトリは一歩歩くたびに一つ間違うねw

N’={N2,Nodd}だから、N2⊂N’でない

なんでこんな簡単なことが分からんかな この馬鹿はw
220: 2019/09/15(日)15:38 ID:g2F0dADR(13/20) AAS
ニワトリ 〇〇の一つ覚え

>酒井 拓史 神戸大学
>外部リンク[pdf]:www.sci.shizuoka.ac.jp
>P17
>整礎的関係
>R を集合X 上の二項関係とする.
>基礎公理により,すべての集合X に対して,
省10
221
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/15(日)15:41 ID:NNU+uf1a(16/16) AAS
>>140
(引用開始)
集合Xに対してP(X)でXのべき集合を表す
V0={}
V1=P(V0)={{}}
V2=P(V1)={{},{{}}}
(引用終り)
省16
222
(1): 2019/09/15(日)15:41 ID:g2F0dADR(14/20) AAS
>>206
>集合N’の正規の元は、たった二つ
>では、集合N’は二つの元から成る有限集合か?

ああ、そうだよ。
ニワトリはそんなこもと分からないほどの、スーパー馬鹿なの?

>無限集合を内包していると考えるべしだろ?(^^

何いってんだ?この馬鹿はw
省2
223: 2019/09/15(日)15:49 ID:g2F0dADR(15/20) AAS
>>207
支離滅裂だなw

xが集合だというだけで、x⊂{x}になると思うのが誤り

例えばωを自然数全体の集合としよう
ω={0,1,2,…}
この場合
ω⊂{ω} は ×
省1
224: 2019/09/15(日)15:51 ID:g2F0dADR(16/20) AAS
>>212-214
サルじゃなくニワトリね
サルは哺乳類だからもっと賢い
あれはホントに鳥類並に脳みそがちょびっとしかないw
225: 2019/09/15(日)15:52 ID:g2F0dADR(17/20) AAS
>>215 
その通りですね
>>222に書いた通りです
226: 2019/09/15(日)15:55 ID:g2F0dADR(18/20) AAS
>>216
{{{}}}の要素は{{}}だけなんだから、
{{}}の要素は{}だけ

{{}}しか要素がない集合が
{}を要素にもつ集合を
包含するわけないのは
三歳児でもわかること
省2
227
(2): 2019/09/15(日)16:01 ID:g2F0dADR(19/20) AAS
>>221
対応関係が一つずれてた
V0={{}}

こ・れ・で、君も自分の誤りを認められるかい?w
228: 2019/09/15(日)16:15 ID:g2F0dADR(20/20) AAS
∈は親子関係みたいなもの
AはBの子、BはCの子 だからといって AはCの子にはならないw
{{{}}}の場合{}を追加して{{},{{}}}とすれば
AはCの子になったから、そこではじめて推移的になるw
{{{{}}}}の場合も{}と{{}}を追加して{{},{{}},{{{}}}}とすればいい

ただこの場合{{},{{}}}や{{},{{}},{{{}}}}が推移的になっただけで
それぞれの要素集合が推移的かどうかまでは確かめてない
省3
229: 2019/09/15(日)20:58 ID:7EgpCQEV(1/2) AAS
>>227
友達のオカンと結婚したペタジーニに質問しろや
ちな24歳差やったかな
230: 2019/09/15(日)20:59 ID:7EgpCQEV(2/2) AAS
.322 39 127 で本塁打王・打点王・MVP獲得するけど24歳上の友達の母親と結婚してる助っ人外国人
231
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/16(月)09:14 ID:Snw5PyNp(1/6) AAS
>>227
>対応関係が一つずれてた
>V0={{}}

下記
「ポイント
・空集合 Φ と、もとの集合そのもの A={a,b} も A の部分集合と考えます。忘れないようにしましょう。」
とあるよ
省27
232
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/16(月)10:09 ID:Snw5PyNp(2/6) AAS
>>211
(引用開始)
>>207
>いや、そもそも、素朴集合論では、「ノコギリ」はアトム(元)であって、
>集合同士に適用する⊂(包含関係)は適用できない
ちょw
>5)もしノコギリが集合だと考えると
省23
233
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/16(月)10:38 ID:Snw5PyNp(3/6) AAS
>>188
(引用開始)
1)素朴集合の元(要素)として
・大工道具セットの箱A(ノコギリ、金槌、ドライバー)
・釣り道具セットの箱B(釣り竿、釣り針、釣り糸)
・ケースに入れたノコギリ={ノコギリ} (一元集合とする(ノコギリはよく使うため))
・大工道具セットの箱C(金槌、ドライバーのみ)(ノコギリを出した)
省27
234: 2019/09/16(月)10:46 ID:4OYL0rf4(1/14) AAS
>>231
君、肝心の
「{}∈{{}} {{}}∈{{{}}} だけど {}∈{{{}}}でない」 
「{{}}∈{{{}}} で {{}}は集合 だけど {{}}⊂{{{}}}でない」
は理解できたかな?
235: 2019/09/16(月)10:48 ID:4OYL0rf4(2/14) AAS
>>242
>⊂とか∈とかの意味づけが、この二つの集合論で微妙に違う

どの集合論でも
「{}∈{{}} {{}}∈{{{}}} だから {}∈{{{}}}」 
「{{}}∈{{{}}} で {{}}は集合 だから {{}}⊂{{{}}}」
は正当化できないけど、まだ、こんな簡単なことが理解できないの?
236
(9): 2019/09/16(月)10:54 ID:4OYL0rf4(3/14) AAS
>>233
>別の素朴集合論の例を考えてみよう
>1)ある会社A社があって、事業部が3つ、第一、第二、第三
>2)各事業部には、部が3つ、第一、第二、第三
>3)各部には、課が3つ、第一、第二、第三
>4)A社={第一事業部、第二事業部、第三事業部}
> 以下同様に、集合で、部、課などとつづく
省17
237: 2019/09/16(月)11:00 ID:4OYL0rf4(4/14) AAS
>>232
>⊂とか∈とかの意味づけが、この二つの集合論で微妙に違う

どの集合論でも
「{}∈{{}} {{}}∈{{{}}} だから {}∈{{{}}}」 
「{{}}∈{{{}}} で {{}}は集合 だから {{}}⊂{{{}}}」
は正当化できないけど、まだ、こんな簡単なことが理解できないの?
238
(2): 2019/09/16(月)11:05 ID:4OYL0rf4(5/14) AAS
>>236 追記
「ベン図で描ける」素朴集合論では
2段以上の∈の連鎖は考えてない

つまりurelementたる対象と、その対象の集まりである集合 の関係しか考えてない
国ー県ー市 とかいうのは、あくまで包含関係によるヒエラルキー
国は国民の集合、県は県民の集合、市は市民の集合であって、要素は全部ヒト

ベン図で描けるヒエラルキーのは包含関係だけだからw
239: 2019/09/16(月)12:25 ID:wRT0uj3O(1) AAS
>>232
>それ、そもそも、自分で>>188の5)で
>「もしノコギリが集合だと考えると」で初めて
>「ノコギリは、集合ではなく元だったので ノコギリ∈Z」を導いたのです(^^;
バカ丸出し

>5)もしノコギリが集合だと考えると
>・ノコギリ⊂{ノコギリ}⊂Z (包含関係)
省9
240
(1): 2019/09/16(月)13:14 ID:xaQkAvRz(1) AAS
↑延々とスレ主に絡み続けるサル石というアホ(笑
241
(1): 2019/09/16(月)13:22 ID:olX6mSCE(1/2) AAS
>>240
哀れな素人さん、どうも、スレ主です
お元気そうでなによりです
242
(2): 2019/09/16(月)13:29 ID:olX6mSCE(2/2) AAS
>>236
どうも、スレ主です
ビエロちゃんかな
「会社は社員の集合」とか
勝手に定義を、変えるのは、
ご法度ですよ(゜ロ゜;
243
(1): 2019/09/16(月)13:58 ID:680EMxic(1/5) AAS
>>238
ベン図を、勝手に狭く解釈して(゜ロ゜;
ダメダメだな
1-
あと 759 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.044s