[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
527
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/01(日)10:12 ID:dvD9YE7H(14/39) AAS
>>526
つづき

5)
このように、係数をサイコロの目1〜6に制限しても、多項式の次数が1上がる毎に、場合の数は6倍になる
多項式環の次元は可算無限であることを想起すると、「多項式環から”ランダムに”1つ多項式を取り出す」という考えは
(確率論としては)
場合の数が指数関数的に発散するので、定義不能であることがわかる
省12
529
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/01(日)10:13 ID:dvD9YE7H(15/39) AAS
>>527
つづき

(参考)
スレ47 2chスレ:math
時枝問題(数学セミナー201511月号の記事)
(抜粋)
実数列の集合 R^Nを考える.
省19
542: 2019/09/01(日)12:01 ID:CU1S7ZwH(12/24) AAS
>>527
>”d次多項式の数が、指数関数的に発散するので、この大小比較の確率計算は不能”という結論です
まったくナンセンス
Ω={1,...,100} なので指数関数的発散もクソも無い
バカ丸出し
561
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/01(日)15:52 ID:dvD9YE7H(21/39) AAS
>>546 補足

これ、不成立でしょ
1)最後の「残り1列のD+1から先を開け、同値類を決め、その後同値類を作り、代表を選ぶ」で
 選んだ代表から決まる決定番号d = d(s)は、
 「D>=d」となる確率はゼロ、つまりP(D>=d)=0
 ∵ dの場合の数は、指数関数的に発散するため(>>527ご参照)
  なお、このことは、仮にdが自然数中の一様分布だとしても、同様にP(D>=d)=0になる
省6
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.044s