[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
198
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/27(火)09:54 ID:692AfEGD(1/12) AAS
>>197 追加

外部リンク:ja.wikipedia.org
カラテオドリの拡張定理
(抜粋)
数学の測度論におけるカラテオドリの拡張定理(カラテオドリのかくちょうていり、英: Caratheodory's extension theorem)は「与えられた集合 Ω の部分集合からなる集合環 R 上定義される任意の σ-有限測度(英語版)は、R により生成される σ-代数上の測度へと一意に拡張出来る」ということを述べた定理である。
この定理の帰結として、実数からなる区間すべてを含む空間上で定義された任意の測度は、実数全体の成す集合 R 上のボレル集合族上の測度へと拡張することができる。
これは測度論における非常に強力な結果であり、例えば、ルベーグ測度の存在の証明にも使用された。
省17
200
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/27(火)10:03 ID:692AfEGD(3/12) AAS
>>198 追加

外部リンク:ja.wikipedia.org
ルベーグ=スティルチェス積分
(抜粋)
ルベーグ=スティルチェス積分は、ルベーグ=スティルチェス測度と呼ばれる実数直線上の有界変動函数から得られる測度に関する通常のルベーグ式積分である。ルベーグ=スティルチェス測度は正則ボレル測度であり、逆に実数直線上の任意の正則ボレル測度はルベーグ=スティルチェス測度になる。

目次
1 定義
省19
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s