[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 http://rio2016.5ch.net/test/read.cgi/math/1566715025/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
867: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/08(日) 14:29:17.86 ID:KY2miv9A <i.i.d. 独立同分布> ・現代確率論が、独立な確率変数の無限族を扱えることは、下記時枝記事にもある (時枝は、「箱にXnのランダムな値を入れられて」と表現しているが、数学では箱自身をXnと考えることができる(念のための注)) ・箱が1つある。それをXiとする。サイコロの目を入れる。自明にP(Xi)=1/6 ・その回りに箱を1つ増やす。独立で同分布として、サイコロの目を入れるとして、同じく確率は1/6。 ・箱をn個増やす。上記同様 ・箱をn+1個増やす。上記同様 ・数学的帰納法により、全ての自然数で成立つ。つまりは、時枝記事の数列に適用できるということ (自明だが念のため)・そして、時枝先生は、反省しています。 (下記)「もうちょっと面白いのは,独立性に関する反省だと思う.その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,当てられっこないではないか−−他の箱から情報は一切もらえないのだから」 (下記の独立の定義より) ・独立だから、Xi以外の箱の変数の値が分かっても、Xiの確率は変化せず、P(Xi)=1/6のまま ・”i.i.d. 独立同分布”の仮定より、全てのiについて上記は成立する QED (参考) スレ47?https://rio2016.5ch.net/test/read.cgi/math/1512046472/22- (抜粋) 数学セミナー201511月号P37 時枝記事より 「もうちょっと面白いのは,独立性に関する反省だと思う. 確率の中心的対象は,独立な確率変数の無限族 X1,X2,X3,…である. n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって, その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら, 当てられっこないではないか−−他の箱から情報は一切もらえないのだから. (引用終り) https://ja.wikipedia.org/wiki/%E7%8B%AC%E7%AB%8B_(%E7%A2%BA%E7%8E%87%E8%AB%96) 独立 (確率論) (抜粋) 2つの事象が独立といった場合は、片方の事象が起きたことが分かっても、もう片方の事象の起きる確率が変化しないことを意味する。2つの確率変数が独立といった場合は、片方の変数の値が分かっても、もう片方の変数の確率分布が変化しないことを意味する[1]。 事象 A と B が独立であるとは、事象 B の起こることが事象 A の起こる確率に一切の影響を与えないことを意味する。 http://rio2016.5ch.net/test/read.cgi/math/1566715025/867
871: 132人目の素数さん [] 2019/09/08(日) 14:38:13.43 ID:cMOAtiJl >>867 >・数学的帰納法により、全ての自然数で成立つ。つまりは、時枝記事の数列に適用できるということ 大間違い 任意の有限列で成立することが無限列で成立するとは限らない 数学的帰納法を誤用している 近所の高校生に教えてもらえ まあ高校生も困るだろうな、これだけ説明しても分からないバカ相手じゃ http://rio2016.5ch.net/test/read.cgi/math/1566715025/871
875: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/08(日) 17:48:30.99 ID:KY2miv9A >>867 補足追加 1〜pまでの数をランダムに箱に入れる (例えば、1〜pまでの整数の札を、毎回シャッフルして選ぶ。選んだ数を書いた紙を箱に入れる。札は戻して、繰返す。) 箱は、取り敢ず有限n個とする。 d=1, 2, 3, 4, ・・・, n-1, n *)1,p-1,p^2-p,p^3-p^2,・・・,p^(n-1)-p^(n-2),p^n-p^(n-1) dは決定番号 *)は、場合の数で、全体ではp^n これを確率分布に直すと d= 1, 2, 3, 4 , ・・・, n-1, n p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,p^-p^2, 1-1/p 時枝の決定番号では、見ての通り、nが大きくなっても 減衰しません(下記「裾の重い分布」ご参照) こういう分布で、d→∞ になると なので、d→∞で確率論における確率測度(probability measure )(例えば下記重川「定義1.3」(特にP(Ω)=1)など)を満たさなくなるのです https://ja.wikipedia.org/wiki/%E8%A3%BE%E3%81%AE%E9%87%8D%E3%81%84%E5%88%86%E5%B8%83 裾の重い分布 (抜粋) 裾の重い分布あるいはヘヴィーテイルとは、確率分布の裾がガウス分布のように指数関数的には減衰せず[1]、それよりも緩やかに減衰する分布の総称。 また類似の用語に、ファットテイル、裾の厚い分布、ロングテール、劣指数的(subexponential)などがある。 スレ74 https://rio2016.5ch.net/test/read.cgi/math/1564659345/72- https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2013bpr.pdf 2013年度前期 確率論基礎 講義ノート 重川一郎 京都大学大学院理学研究科数学教室 P6 定義1.3 可測空間(Ω,F)上の測度PでP(Ω)=1 を満たすものを確率測度(probability measure )という。 http://rio2016.5ch.net/test/read.cgi/math/1566715025/875
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.041s