[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 http://rio2016.5ch.net/test/read.cgi/math/1566715025/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
850: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/08(日) 10:59:53.86 ID:KY2miv9A >>847 (引用開始) >(>>832 「ZFC公理系について:その2」で、自然数Nが数学的帰納法(ペアノの公理)を満たすことが証明されています。つまり、自然数Nは「1つずつ」で尽くされる!勿論、無限公理を認めた上ですがね) 「自然数Nは「1つずつ」で尽くされる。」が意味不明。 「自然数Nが数学的帰納法を満たす」からなぜ「自然数Nは「1つずつ」で尽くされる。」が言えるのか? (引用終り) 下記もご参照ください 1)数学的帰納法 P(0)とP(n)で成り立ち、nの後者 n+1(下記ではn+)でP(n+1)が成立つ→全ての自然数Nで成立つ 2)これを公理として認めるわけですから、”「P(k) ⇒ P(k + 1)」で自然数全体に至る”を認めるということです QED (>>832より) http://tech-blog.rei-frontier.jp/entry/2017/11/09/100000 Rei Frontier Tech Blog 2017-11-09 ZFC公理系について:その2 (抜粋) ペアノの公理 前節の議論によって、我々はついに当初の目的であった「自然数の全体」という、具体的でかつ非自明な集合を手に入れることができました。 今我々が構成した"集合論的自然数"が"普通の自然数"と同じような"算術的性質"をもつことが示されるでしょうか? 自然数のもつべき"算術的性質"には、大小関係、足し算掛け算等々いろいろありますが、それらはいくつかの基本的な性質から証明できます(長くなるので、本記事では扱いません)。そのような基本的性質として挙げられるのが、ペアノ(Peano)の公理です。 すなわち、集合aがつぎの命題たちを満たしていれば、aは"自然数の集合の算術的性質"を満たすことが示されます: 補題2の証明で活躍した公理(P3)は数学的帰納法の原理とも呼ばれています。実際、Peanoの公理は高校数学などでもお馴染みの数学的帰納法の定理を含んでいます: つづく http://rio2016.5ch.net/test/read.cgi/math/1566715025/850
851: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/08(日) 11:00:20.98 ID:KY2miv9A >>850 つづき https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E7%9A%84%E5%B8%B0%E7%B4%8D%E6%B3%95 数学的帰納法 (抜粋) 数学的帰納法は自然数に関する命題 P(n) が全ての自然数 n に対して成り立っている事を証明するための、次のような証明手法である[注 1]。 1.P(1) が成り立つ事を示す。 2.任意の自然数 k に対して、「P(k) ⇒ P(k + 1)」が成り立つ事を示す。 3.以上の議論から任意の自然数 n について P(n) が成り立つ事を結論づける。 上で1と2から3を結論づける所が数学的帰納法に当たる。自然数に関するペアノの公理の中に、ほぼ等価なものが含まれている。 高校の教科書等の初等的な解説書ではドミノ倒しに例えて数学的帰納法を説明しているものも多い。 以上の議論はあくまで数学的帰納法が成り立つ理由の直観的説明であって、1, 2 と 3 の間にはギャップがある。詳しくは後述の「数学的帰納法の形式的な取り扱い」の項目を参照されたい。 数学的帰納法の形式的な取り扱い 有限回のステップでは有限個の n に対してしか P(n) を結論づける事ができず、「無限個ある自然数全てに対して P(n) が成り立つ」という数学的帰納法の結論について有限の長さの証明が与えられたとはいえない。これが前述した直観的説明におけるギャップである。 ペアノ算術などの形式的な体系では、数学的帰納法を証明に用いてよいことが公理として仮定されるのが普通である。つまり、形式的には、自然数の性質から数学的帰納法の正しさが証明できるのではなく、逆に自然数の本質的な性質を与える推論規則として数学的帰納法が仮定される、ということになる。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1566715025/851
861: 132人目の素数さん [] 2019/09/08(日) 13:08:08.47 ID:cMOAtiJl >>850 >2)これを公理として認めるわけですから、”「P(k) ⇒ P(k + 1)」で自然数全体に至る”を認めるということです 何の回答にもなってないw ”「P(k) ⇒ P(k + 1)」で自然数全体に至る”が意味不明 数学的帰納法からなぜ”「P(k) ⇒ P(k + 1)」で自然数全体に至る”が言えるのか不明 http://rio2016.5ch.net/test/read.cgi/math/1566715025/861
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s