[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 http://rio2016.5ch.net/test/read.cgi/math/1566715025/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
820: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/07(土) 20:52:49.25 ID:8WzaZQff >>810 (引用開始) そういえばサルは「関数論が反例」と言わなくなったね さすがのサルでもバカ過ぎると気付いたのかな? (引用終り) いや、いまだ関数論の反例は有効ですよ まあ、あんまり時枝の中で話題が分散してもしかたないからね まあ、荒筋は 1)関数f:R→R を考える 現代数学の定義では、”関数f”は定義域Rから値域R中の一つの値を対応させる写像だということ 2)x1,x2,・・・∈Rと可算無限個の要素に対し、対応する関数値 y1,y2,・・・∈R で、時枝の可算無限個の数列ができる 3)これに時枝理論を適用すると あるyiが存在して、yiの値を、yi以外の関数値たちを知って(使って)、確率99/100で言い当てることができることになる 4)これは矛盾である ∵ 現代数学の関数の定義は、yiの値と、yi以外の関数値たちとは、なんの関係もないのだから yi以外の関数値たちを知ったところで、yiの値を確率99/100で言い当てることはできない 5)反例が導かれたので、時枝の手法は不成立 QED (^^ 細かい話は、過去スレにあるよ(^^ http://rio2016.5ch.net/test/read.cgi/math/1566715025/820
825: 132人目の素数さん [] 2019/09/07(土) 21:23:30.51 ID:rlsdE/6p >>820 >4)これは矛盾である > ∵ 現代数学の関数の定義は、yiの値と、yi以外の関数値たちとは、なんの関係もないのだから > yi以外の関数値たちを知ったところで、yiの値を確率99/100で言い当てることはできない これぞサル知恵w まったく理由になってないw http://rio2016.5ch.net/test/read.cgi/math/1566715025/825
826: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/07(土) 21:58:41.99 ID:8WzaZQff >>820 時枝を論じるなら、せめて大学受験レベルは、修得しておいてほしいね(下記) (参考) https://examist.jp/mathematics/probability/kakurituzenkasiki/ 受験の月 基本的な確率漸化式 (抜粋) 確率と数列 例題 さいころを n 回投げて、1の目が奇数回出る確率を求めなさい。 普通の確率の問題にも見えますが、「1の目が奇数回出る」がやっかいです。投げる回数が3回とか4回ならいいのですが、投げる回数は n 回なので、「奇数回となる確率を全部足す」というわけにはいきません。 このように、いきなり n 回の場合を考えるのは難しくても、 n の場合と n+1 の場合の関係はわかりやすいことがあります。 これがわかれば、漸化式を作って後は一般項を求めるだけですね。 まず、どんな数列を扱えばいいかを考えましょう。 それは、答えに直接つながる内容ですが、「 n 回投げて、1の目が奇数回出る確率」を pn とおきます。 確率が並んでいる数列 {pn} を考える、ということですね。 https://izu-mix.com/math/?p=173 イズミの数学 サイコロの目が3種類になる確率 [2007 神戸大・文理(後)] 2016/6/18 (抜粋) 問題 n を 3 以上の整数とする。このとき、次の問に答えよ。 (1) さいころを n 回投げたとき、出た目の数がすべて 1 になる確率を求めよ。 (2) さいころを n 回投げたとき、出た目の数が 1 と 2 の2種類になる確率を求めよ。 (3) さいころを n 回投げたとき、出た目の数が3種類になる確率を求めよ。 http://rio2016.5ch.net/test/read.cgi/math/1566715025/826
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s