[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 http://rio2016.5ch.net/test/read.cgi/math/1566715025/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
677: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/03(火) 23:06:38.35 ID:TckWkbgX 下記Denis "I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}" に対して 厳密な数学の証明がないというのが、Pruss氏、確率論の専門家さんと、私ね(^^ (そもそも、Denis氏に対する批判” but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.”もあるよ) (>>241) そこを(数学的に厳密でないと)批判しているのが、Alexander Pruss氏だよ https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Dec 9 '13 (抜粋) asked Dec 9 '13 at 16:16 Denis I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up. Alexander Pruss answered The probabilistic reasoning depends on a conglomerability assumption, namely that given a fixed sequence u ̄ , the probability of guessing correctly is (n?1)/n, then for a randomly selected sequence, the probability of guessing correctly is (n?1)/n. But we have no reason to think the event of guessing correctly is measurable with respect to the probability measure induced by the random choice of sequence and index i, and we have no reason to think that the conglomerability assumption is appropriate. A quick way to see that the conglomerability assumption is going to be dubious is to consider the analogy of the Brown-Freiling argument against the Continuum Hypothesis (see here for a discussion). http://www.mdpi.com/2073-8994/3/3/636 つづく http://rio2016.5ch.net/test/read.cgi/math/1566715025/677
678: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/03(火) 23:06:56.95 ID:TckWkbgX >>677 つづき スレ73 https://rio2016.5ch.net/test/read.cgi/math/1563282025/486- (>>486より再録) 過去、確率論の専門家さん来訪して、Pruss氏の指摘(2013)とほぼ同じことを指摘している(下記) (参考確率論の専門家さん ID:f9oaWn8A) スレ20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/519- 519 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A >>518 X=(X_1,X_2,…)をR値の独立な確率変数とする. 時枝さんのやっていることは 無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める. 無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める. P(f(X)=X_{g(X)})=99/100 ということだが,それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど. 522 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z))=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 528 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A おれが問題視してるのはの可測性 正確にかくために確率空間(Ω,F,P)を設定しよう Y,Zはそれぞれ(Ω,F)から(R^N,B(R^N))の可測関数である. もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない 532 返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A >>530 >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1566715025/678
680: 132人目の素数さん [] 2019/09/03(火) 23:10:11.62 ID:Xrpw7Ni5 >>676-678 サル発狂w http://rio2016.5ch.net/test/read.cgi/math/1566715025/680
685: 132人目の素数さん [sage] 2019/09/04(水) 06:46:37.59 ID:4z5/pAq/ >>677-678 何度繰り返しても 時枝記事では箱の中身は確率変数ではなく定数だから 非可測性なんて無関係 残念でした http://rio2016.5ch.net/test/read.cgi/math/1566715025/685
805: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/07(土) 11:21:25.16 ID:8WzaZQff >>799 笑えます 自明でしょ(^^ 箱1,2,3,・・・・(箱の可算無限列) ↓↑ N 1,2,3,・・・・(自然数) ↓↑ X1,X2,X3,・・・・(確率変数) ↓↑ 1,3,2,3,5・・・・ (サイコロの目による無限数列の一例) ここに、”↓↑”は、上の集合と下の集合が全単射になることを意味する (なにを、ごちゃごちゃと曲解しているのですかね〜w(^^; ) >> N = {1, 2, ... , n, ...} >全ての自然数に対して{1, 2, ... , 6}の値をそれぞれ1つだけ指定することが >可算無限個の箱全てにサイコロの目を入れるということです 当然でしょw 上記の通り かつ、従来から言っている通り (引用開始) 可算無限個の箱にサイコロの出目を入れるとして A : 「1つずつ」入れる B : 無限個をまとめて入れる A or B : 数当て戦略は成り立つ だから数当て戦略を否定したかったら A and (not B)を考えるしか方法がないんだけれどね (引用終り) 違いますよ 時枝の数当てには、厳密な数学の証明がないと批判されていますよ (>>677-678ご参照) つまり、サイコロの出目を入れると、各箱の確率は1/6になる。例外は無し (>>664ご参照) ところが、時枝は、例外的にある箱が確率99/100になるという その「確率99/100」は、測度論に裏付けられていません!!(「確率99/100」がデタラメだということ) 以上 http://rio2016.5ch.net/test/read.cgi/math/1566715025/805
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.042s