[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 http://rio2016.5ch.net/test/read.cgi/math/1566715025/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
634: 132人目の素数さん [] 2019/09/02(月) 23:51:20.41 ID:JXpq+Nci 数学的帰納法もろくに使いこなせない自称阪大卒w 近所の高校生に教えてもらえw http://rio2016.5ch.net/test/read.cgi/math/1566715025/634
638: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/09/03(火) 07:01:40.61 ID:TckWkbgX >>633-637 おまいら、根拠文典を読まずに踊っているのか?(^^ きちんとさ、根拠文典を読まないと、”だめだめ”だよ 下記の無限公理の説明で 「・(以下同様に繰り返す) 各手続きで得られた集合を要素とする集合を B:={Φ ,{Φ},{Φ ,{Φ}},・・・ } とおくと」 ってあるよね ”(以下同様に繰り返す)”が、おれのいう”1つずつ増やす” に対応するわけだ QED (^^ あと、wikipediaの自然数、ペアノの公理も、きちんと読んでみな(>>627) ”(以下同様に繰り返す)”と同等の表現に、なっていま〜す!!(^^ (参考) https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 無限公理 (抜粋) 定義 ZF公理系における公式な定義は次の通りである。 空集合を要素とし、任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する 解釈と帰結 上記定義では「無限」という言葉は用いられていないが、この公理によって(少なくとも1つの)無限集合の存在が保証されることになる。 まず定義中の集合 A} A は以下の性質を満たすことを確認できる。 ・ Φ ∈ A (空集合 Φ は A の要素である) ・ Φ ∪ {Φ}={Φ}∈ A (「空集合 Φ を要素にもつ集合」は A の要素である) ・ {Φ}∪ {Φ ∪ {Φ}}={Φ ,{Φ}}∈ A(「空集合」と「空集合を要素にもつ集合」の2つを要素にもつ集合は A の要素である) ・(以下同様に繰り返す) 各手続きで得られた集合を要素とする集合を B:={Φ ,{Φ},{Φ ,{Φ}},・・・ } とおくと、 B は A の部分集合である。 この手続きは何回でも繰り返すことができるが、もし有限回で終えた場合、 B は有限集合であり、 A ≠ Bである。 なぜならば定義により B∪ {B}∈ A であるが、 B∪ {B} not∈ B となるからである。 一方 A が有限集合であれば、この手続きを繰り返すことで B が A よりも多くの要素をもつことができてしまう。 従って A は有限集合ではない(すなわち無限集合である)ため、無限公理を採用すれば直ちに無限集合の存在を認めることになる。 上記の手続きはペアノの公理における自然数の構成方法と同様である。 ZFC公理系において、自然数全体の集合は無限集合の中で最小のものである。(可算集合) http://rio2016.5ch.net/test/read.cgi/math/1566715025/638
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s