[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 http://rio2016.5ch.net/test/read.cgi/math/1566715025/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
395: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/08/30(金) 22:48:44.36 ID:exryDrPV >>391 (引用開始) おサル、 「箱の中のサイコロの目の分布なんか 考える必要ないんだって」か (引用終り) センター試験 数学II・数学B 2017年度 第5問 確率変数 Wと、連続型確率変数 Xとが出題されました おサルの確率計算は、だめだね おサルの確率計算では、センター試験解けないw(^^ https://math.nakaken88.com/problem/center-2b-2017-5/ なかけんの数学ノート (抜粋) センター試験 数学II・数学B 2017年度 第5問 解説 2017年1月16日 以下の問題を解答するにあたっては、必要に応じて29ページの正規分布表を用いてもよい。 (1) 1回の試行において、事象 A の起こる確率が p 、起こらない確率が 1−pであるとする。 この試行を n 回繰り返すとき、事象 A の起こる回数を W とする。 確率変数 W の平均(期待値) m が 1216/27 、 標準偏差 σ が 152/27 であるとき、 n=[アイウ] 、 p=[エ]/[オカ] である。 (3) 連続型確率変数 X のとり得る値 x の範囲が s≦x≦t で、確率密度関数が f(x) のとき、 X の平均 E(X) は次の式で与えられる。 考え方 独立試行の平均や分散を答える問題はよくありますが、(1)は逆に平均などから試行回数と確率を求める問題です。公式が頭に入っていれば、連立方程式から求めることができます。 (2)は正規分布で近似して確率を求める問題で、センターではよく出る内容です。正規分布表がどこの確率を表しているかに注意して計算します。 (3)は珍しく連続型の確率変数です。積分の計算が少し難しいです。 http://rio2016.5ch.net/test/read.cgi/math/1566715025/395
411: 132人目の素数さん [] 2019/08/31(土) 08:05:07.12 ID:5Sd8GiRB >>395 時枝問題と異なる問題持ってきても無駄 時枝問題では箱の中身は変わりません 何回試行しても同じw 代わりに回答者(過去の記憶に頼らないために別人)が 毎回異なる答えを出す 要するに回答者の答えのほうが確率変数 ここがポイント 分からないニワトリ君は大学に受からないわけだwww 阪大?絶対無理wwwwwww http://rio2016.5ch.net/test/read.cgi/math/1566715025/411
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s