[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
883
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)22:34 ID:KY2miv9A(23/23) AAS
>>875 訂正と追加

訂正
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,p^-p^2, 1-1/p
 ↓
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,1/p-1/p^2, 1-1/p

追加
(引用開始)
dは決定番号
*)は、場合の数で、全体ではp^n
これを確率分布に直すと
d=   1,     2,     3,       4     , ・・・,   n-1,  n
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,1/p-1/p^2, 1-1/p
(引用終り)

ここ分かると思うが
s = (s1,s2,s3,・・・,sn) (問題の数列)
r = (r1,r2,r3,・・・,rn) (代表の数列)
差を取ると
s-r = (s1-r1,s2-r2,s3-r3,・・・,sn-rn)
決定番号dなら、d番目から両者が一致して0になります。

それで、上記の分布で分かることは、d=1とか2とか小さい値の確率は小さいのです
確率的には、d=nとなる場合が、一番確率が大きいのです

それで、入れる数p→∞と大きくすると
d=n の確率 1-1/p→1
d=n以外の確率 (p^3-p^2)/p^n(など)→0
となります

なので、d=n以外の確率は0になるのです
d=n以外の場合を論じるのは、確率の0場合を論じていることになります。
確率の0場合に、二つの決定番号でどちらが大きいかなどと言っているのが、時枝記事の手法です
1-
あと 119 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.009s